×

A hybrid extragradient method extended to fixed point problems and equilibrium problems. (English) Zbl 1290.90084

Summary: We present a new hybrid extragradient iteration method for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of equilibrium problems for a pseudomonotone and Lipschitz-type continuous bifunction. We obtain strongly convergent theorems for the sequences generated by these processes in a real Hilbert space.

MSC:

90C48 Programming in abstract spaces
90C25 Convex programming
65K10 Numerical optimization and variational techniques
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anh PN, Vietnam J. Math. 36 pp 209– (2008)
[2] Anh PN, Acta Math. Vietnam. 34 pp 183– (2009)
[3] DOI: 10.1016/j.camwa.2011.02.052 · Zbl 1221.90083
[4] DOI: 10.1007/s10957-004-0926-0 · Zbl 1062.49005
[5] Anh PN, Acta Math, Vietnam. 34 pp 67– (2009)
[6] Anh PN, J. Appl. Math. Inform. (2011)
[7] Blum E, Math. Stud. 63 pp 127– (1994)
[8] DOI: 10.1007/BF01585753 · Zbl 0709.90013
[9] DOI: 10.1007/978-1-4613-0239-1
[10] Facchinei F, Finite-dimensional Variational Inequalities and Complementary Problems (2003) · Zbl 1062.90002
[11] DOI: 10.1017/CBO9780511526152
[12] DOI: 10.1090/S0002-9904-1967-11864-0 · Zbl 0177.19101
[13] DOI: 10.1023/B:JOTA.0000005448.12716.24 · Zbl 1084.49009
[14] DOI: 10.1023/A:1026050425030 · Zbl 1061.90112
[15] Moudafi A, J. Natur. Geom. 15 pp 91– (1999)
[16] DOI: 10.1007/s10957-005-7564-z · Zbl 1130.90055
[17] DOI: 10.1007/s10957-009-9585-5 · Zbl 1225.90136
[18] DOI: 10.1080/02331930601122876 · Zbl 1152.90564
[19] DOI: 10.1016/j.jmaa.2006.08.036 · Zbl 1122.47056
[20] DOI: 10.1016/j.cam.2009.11.008 · Zbl 1204.65082
[21] DOI: 10.1007/BF01190119 · Zbl 0797.47036
[22] DOI: 10.1023/B:JOTA.0000005048.79379.b6 · Zbl 1045.49018
[23] Yao Y, Fixed Point Theory Appl.
[24] Zeng LC, Taiwanese J. Math. 10 pp 1293– (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.