×

Ergodic and topological properties of coulombic periodic potentials. (English) Zbl 0616.58044

The motion of a classical pointlike particle in a two-dimensional periodic potential with negative coulombic singularities is examined. This motion is shown to be Bernoullian for many potentials and high enough energies. Then the motion on the plane is a diffusion process. All such motions are topologically conjugate and the periodic orbits can be analysed with the help of a group.

MSC:

37N99 Applications of dynamical systems
37A99 Ergodic theory
37C10 Dynamics induced by flows and semiflows
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abraham, R., Marsden, J.E.: Foundations of mechanics. Reading: The Benjamin/Cummings 1978 · Zbl 0393.70001
[2] Anosov, D.V.: Geodesic flows on closed manifolds with negative curvature. Proc. of the Steklov Institute of Mathematics, Vol. 90, Providence: Am. Math. Soc. (1969 · Zbl 0176.19101
[3] Arnold, V.I.: Mathematical methods of classical mechanics. Graduate Texts in Mathematics, Vol. 60. Berlin, Heidelberg, New York: Springer 1978 · Zbl 0386.70001
[4] Arnold, V.I.: Geometrical methods in the theory of ordinary differential equations. Grundlehren der mathematischen Wissenschaften, Vol. 250. Berlin, Heidelberg, New York: Springer 1983 · Zbl 0507.34003
[5] Arnold, V.I., Avez, A.: Ergodic problems of classical mechanics. New York: W. A. Benjamin 1968 · Zbl 0167.22901
[6] Behnke, H., Sommer, F.: Theorie der analytischen Funktionen einer komplexen Variablen. Berlin, Heidelberg, New York: Springer 1983 · Zbl 0065.06102
[7] Berry, M.: Semiclassical mechanics of regular and irregular motion. Les Houches Session XXXV; Amsterdam, New York, Oxford: North-Holland 1981
[8] Brown, J.R.: Ergodic theory and topological dynamics. New York: Academic Press 1976 · Zbl 0334.28011
[9] Bunimovich, L.A., Sinai, Ya.G.: Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys.78, 479-497 (1981) · Zbl 0459.60099
[10] Easton, R.: Regularisation of vector fields by surgery. J. Differ. Equations10, 92-99 (1971) · Zbl 0215.28402
[11] Efimov, N.V.: Impossibility of a complete regular surface in Euclidean 3-space whose Gaussian curvature has a negative upper bound. Sov. Math.4, 843-846 (1963) · Zbl 0135.40001
[12] Farkas, H.M., Kra, I.: Riemann surfaces. Graduate Texts in Mathematics, Vol. 71. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0475.30001
[13] Gallavotti, G.: Lectures on the billard. In: Dynamical systems, theory and applications. Moser, J. (ed.). Lecture Notes in Physics, Vol. 38. Berlin, Heidelberg, New York: Springer 1974
[14] Gallavotti, G., Ornstein, D.S.: Billards and Bernoulli schemes. Commun. Math. Phys.38, 83-101 (1974) · Zbl 0313.58017
[15] Gutzwiller, M.C.: The quantization of a classically ergodic system. In: Classical quantum models and arithmetic problems. Lecture Notes in Physics and Mathematics, Vol. 92. New York: Dekker 1984 · Zbl 0543.70024
[16] Klingenberg, W.: Eine Vorlesung über Differentialgeometrie. Berlin, Heidelberg, New York: Springer 1973 · Zbl 0267.53001
[17] Klingenberg, W.: Lectures on closed geodesics. Grundlehren der mathematischen Wissenschaften, Vol. 230. Berlin, Heidelberg, New York: Springer 1978 · Zbl 0397.58018
[18] Markus, L., Meyer, K.R.: Generic Hamiltonian dynamical systems are neither integrable nor ergodic. Mem. Am. Math. Soc.144 (1974) · Zbl 0291.58009
[19] Massey, W.S.: Algebraic topology. Graduate Texts in Mathematics, Vol. 56. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0361.55002
[20] Milnor, J.: Morse theory. Annals of Mathematics Studies. Princeton: Princeton University Press 1973
[21] Ornstein, D.S.: What does it mean for a mechanical system to be isomorphic to the Bernoulli flow? In: Dynamical systems, theory and applications. Moser, J. (ed.). Lecture Notes in Physics, Vol. 38. Berlin, Heidelberg, New York: Springer 1974
[22] Ornstein, D., Weiss, B.: Geodesic flows are Bernoullian. Isr. J. Math.14, 184-198 (1973) · Zbl 0256.58006
[23] Ratner, M.: Markov partitions for Anosov flows onn-dimensional manifolds. Isr. J. Math.15, 92-114 (1973) · Zbl 0269.58010
[24] Ratner, M.: The central limit theorem for geodesic flows onn-dimensional manifolds of negative curvature. Isr. J. Math.16, 181-197 (1973) · Zbl 0283.58010
[25] Satake, I.: On a generalization of the notion of a manifold. Proc. Nat. Acad. Sci.42, 359-363 (1956) · Zbl 0074.18103
[26] Satake, I.: The Gauss-Bonnet theorem forV-manifolds. J. Math. Soc. Jpn.9, 464-492 (1957) · Zbl 0080.37403
[27] Schwartz, J.T.: Nonlinear functional analysis. New York: Gordon and Breach 1969 · Zbl 0203.14501
[28] Siegel, C.L., Moser, J.K.: Lectures on celestial mechanics. Grundlehren der mathematischen Wissenschaften, Vol. 187. Berlin, Heidelberg, New York: Springer 1971 · Zbl 0312.70017
[29] Spivak, M.: Differential geometry, Vol. II. Berkeley: Publish or Perish 1979 · Zbl 0439.53003
[30] Stiefel, E.L., Scheifele, G.: Linear and regular celestial mechanics. Grundlehren der mathematischen Wissenschaften, Vol. 174. Berlin, Heidelberg, New York: Springer 1971 · Zbl 0226.70005
[31] Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, Vol. 79. Berlin, Heidelberg, New York: Springer 1982 · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.