Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type. (English) Zbl 1288.54044

The authors generalize the so-called tangential property of four single-valued mappings to that of two single-valued and two multi-valued mappings, supported by a simple example. An existence theorem is proved for a common fixed point of Greguš type of four mappings having this type of generalized tangential property and satisfying a general contractive condition. This theorem is shown to generalize several previously obtained fixed point results.


54H25 Fixed-point and coincidence theorems (topological aspects)
54C60 Set-valued maps in general topology
54E40 Special maps on metric spaces
Full Text: DOI


[1] doi:10.1155/S0161171202007524 · Zbl 0993.54040
[2] doi:10.1006/jmaa.2000.7274 · Zbl 0989.47047
[3] doi:10.1090/S0002-9939-1973-0313897-4
[4] doi:10.1090/S0002-9939-1980-0553382-1
[5] doi:10.1007/BF02771543 · Zbl 0192.59802
[6] doi:10.1016/j.aml.2010.10.042 · Zbl 1206.54064
[7] doi:10.1515/ROSE.2009.022 · Zbl 1221.47105
[8] doi:10.1155/S0161171286000935 · Zbl 0613.54029
[9] doi:10.1016/S0022-247X(02)00059-8 · Zbl 1008.54030
[10] doi:10.1016/j.jmaa.2004.06.047 · Zbl 1064.54055
[11] doi:10.1016/j.na.2006.09.010 · Zbl 1128.54024
[12] doi:10.1016/j.aml.2009.07.015 · Zbl 1225.54028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.