On non-unique factorizations into irreducible elements. (Über nicht-eindeutige Zerlegungen in irreduzible Elemente.) (German) Zbl 0618.12002

Let \(R\) be the ring of integers of an algebraic number field \(K\) and let \(G\) be the ideal class group. Every \(a\in R\setminus (R^{\times}\cup \{0\})\) has a (not necessarily unique) factorization \(a=u_ 1\cdot...\cdot u_ k\) into irreducible elements \(u_ 1,...,u_ k\in R\); then \(k\) is called the length of the factorization and \(L(a)=\{k \mid a\) has factorization of length \(k\}\) the set of lengths of \(a\). Słiwa proved: if \(\# G\geq 3\), then for every \(m\in {\mathbb N}\) there is an element \(a\in R\setminus (R^{\times}\cup \{0\})\) with \({\#}L(a)=m.\)
In this paper the structure of sets of lengths is investigated. The arithmetical problem for sets of lengths is translated into a combinatorial problem for the abelian group \(G\). Let \(D(G)\) be Davenport’s constant; then Theorem 1 asserts the existence of another constant \(M(G)\) also depending only on \(G\) such that every set of lengths \(L\) has the following form: \(L=\{x_ 1,...,x_{\alpha}\), \(y,y+{\mathfrak d}_ 1,...\), \(y+{\mathfrak d}_{\mu}\), \(y+d,y+{\mathfrak d}_ 1+d,...,y+{\mathfrak d}_{\mu}+d\), \(y+2d,...\), \(y+{\mathfrak d}_ 1+(k-1)d,...,y+{\mathfrak d}_{\mu}+(k-1)d\), \(y+kd\), \(z_ 1,...,z_{\beta}\}\) with \(x_ 1<...<x_{\alpha}<y<y+{\mathfrak d}_ 1<...<y+{\mathfrak d}_{\mu}<y+d<y+kd<z_ 1<...<z_{\beta}\), \(\alpha\leq M(G)\), \(\beta\leq M(G)\) and \(1\leq d\leq D(G)-2.\) Using analytical methods it is further proved that (in the sense of density) almost all sets of lengths are as simple as possible: they are of the form \(L=\{y,y+1,...,y+k\}\) (Theorem 2).
Reviewer: A. Geroldinger


11R04 Algebraic numbers; rings of algebraic integers
11R27 Units and factorization
11R23 Iwasawa theory
20K01 Finite abelian groups
20D60 Arithmetic and combinatorial problems involving abstract finite groups
Full Text: DOI EuDML


[1] Carlitz, L.: A characterization of algebraic number fields with class number two. Proc. Am. Math. Soc.11, 391-392 (1960) · Zbl 0202.33101
[2] Claborn, L.: Every abelian group is a class group. Pac. J. Math.18, 219-222 (1966) · Zbl 0166.30602
[3] Clifford, A.H., Preston, G.B.: The algebraic theory of semi-groups. Vol. II. Providence, Rhode Island 1967 · Zbl 0178.01203
[4] Fossum, R.M.: The divisor class group of a Krull domain. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Berlin Heidelberg New York: Springer 1973 · Zbl 0256.13001
[5] Grosswald, E.: Topics from the theory of numbers. Second edition, Basel: Birkhäuser 1984 · Zbl 0532.10001
[6] Halter-Koch, F.: Factorization of algebraic integers. Berichte der Mathematisch-Statistischen Sektion im Forschungszentrum Graz, Nr. 191 (1983)
[7] Kaplansky, I.: Infinite abelian groups. The University of Michigan Press, third printing 1960
[8] Narkiewicz, W.: Finite abelian groups and factorization problems. Coll. Math.42, 319-330 (1979) · Zbl 0514.12004
[9] Narkiewicz, W.: Elementary and analytic theory of algebraic numbers, Warszawa: PWN 1974 · Zbl 0276.12002
[10] Rémond, P.: Étude asymptotique de certaines partitions dans certains semi-groupes. Ann. Sci. École Norm. Sup.83, 343-410 (1966) · Zbl 0157.09602
[11] Skula, L.: Divisorentheorie einer Halbgruppe. Math. Z.114, 113-120 (1970) · Zbl 0185.04804
[12] ?liwa, J.: Remarks on factorizations in algebraic number fields. Coll. Math.46, 123-130 (1982) · Zbl 0514.12005
[13] Zaks, A.: Half-factorial domains. Israel J. Math.37, 281-302 (1980) · Zbl 0509.13017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.