×

zbMATH — the first resource for mathematics

Fibered p-groups. (English) Zbl 0618.20016
Suppose G is a p-group which is not necessarily finite but has non- trivial centre Z. The paper is concerned with the case when G has a partition, that is, a set of at least two subgroups for which any non- identity element of G lies in precisely one of them. The case of exponent p is not of much interest, since the set of all subgroups of order p is such a partition, but it is easy to see that if the exponent of G is greater than p, the subgroup \(H_ p\) generated by all elements of order greater than p is contained in a member of the partition. Thus \(H_ p<G\), and conversely, groups for which \(H_ p<G\) have an obvious partition. Consideration of such groups leads to the definition of a group of type (p,\(\nu)\) as \(<a,b>\), when \(| <a>| =p^{\nu}\), ab\(\neq ba\), \(b\not\in <a>^ G\), and \((b^ ix)=1\) for \((i,p)=1\) and \(x\in <a>^ G\). Such groups are described in terms of a class of commutative local rings. In the final section, some examples are constructed by means of couplings. The readability of the paper is marred by its unorthodox notation.
Reviewer: N.Blackburn

MSC:
20D15 Finite nilpotent groups, \(p\)-groups
20D60 Arithmetic and combinatorial problems involving abstract finite groups
20D30 Series and lattices of subgroups
16Y30 Near-rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Herzer, Endliche nicht kommutative Gruppen mit Partition \(\pi\) und fixpunkt-freiem \(\pi\)-Automorphismus. Arch. d. Math.34 (1980), 385–392. · Zbl 0431.51001 · doi:10.1007/BF01224975
[2] H. Karzel, Unendliche Dicksonsche Fastkörper. Arch. Math.16 (1965), 247–2561. · Zbl 0131.01701 · doi:10.1007/BF01220030
[3] H. Karzel, Kinematische Algebren und ihre geometrischen Ableitungen. Abh. Math. Sem. Univ. Hamburg41 (1974), 158–171. · Zbl 0296.50019 · doi:10.1007/BF02993509
[4] H. Karzel, Affine incidence groups. Rendiconti del Seminario Matematico di Brescia, Vol.7 (1984), 409–425. Atti del Convegno ”Geometria combinatoria e di incidenza: fondamenti e applicazioni”, La Mendola, 4–11 luglio 1982.
[5] H. Karzel andJ. C. Maxson, Kinematic spaces with dilatations. J. of Geometry22 (1984), 196–201. · Zbl 0537.51022 · doi:10.1007/BF01222846
[6] H. Karzel andJ. C. Maxson, Fibered groups with non-trivial centers. Res. d. Mathematik7 (1984), 192–208. · Zbl 0553.20011
[7] M. Marchi andC. Perelli Cippo, Su una perticolare classe di S-spazi. Rend. Sem. Mat. Brescia4 (1979), 3–42.
[8] K. Sörensen, Inzidenzgruppen der Ordnung 3. Math. Zeitschr.154 (1977), 239 bis 241 · Zbl 0365.50005
[9] M. Bilotti andA. Scarselli, Sulle strutture di translazione di dilatazioni proprie. Atti Acc. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. (8)67 (1979), 75–80. · Zbl 0471.51002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.