Melin, Anders Intertwining methods in the problem of inverse scattering. (English) Zbl 0618.35029 Journ. Équ. Dériv. Partielles, St.-Jean-De-Monts 1986, Conf. No. 5, 8 p. (1986). Let \(H_ v\) be the Schrödinger operator with a short range potential v(x), A be the intertwining operator: \(H_ vA=AH_ 0\). By using a fundamental solution of the ultrahyperbolic operator \(\Delta_ x- \Delta_ y\), the author obtains explicit expressions for the intertwining operator A, for wave operators \(W_{\pm}=\lim_{t\to \pm \infty} e^{itH}ve^{-itH}0\), and a formula for the scattering operator \(S=W^*_+W_-.\) These results are applied to the inverse scattering problems. Reviewer: S.Tajima Cited in 1 Document MSC: 35J10 Schrödinger operator, Schrödinger equation 35P25 Scattering theory for PDEs 35R30 Inverse problems for PDEs 47A40 Scattering theory of linear operators Keywords:Schrödinger operator; short range potential; intertwining operator; fundamental solution; ultrahyperbolic operator; explicit expressions; scattering operator PDF BibTeX XML Full Text: Numdam EuDML OpenURL