## A real quaternion matrix equation with applications.(English)Zbl 1317.15016

Let $$\mathbb{H}^{m\times n}$$ be the set of all $$m\times n$$ matrices over the real quaternion algebra $\mathbb{H}=\{a_0+a_1i+a_2j+a_3k|\,i^2=j^2=k^2=ijk=-1,\, a_0,a_1,a_2,a_3\in\mathbb{R}\}.$ For $$A\in\mathbb{H}^{m\times n}$$, it is denoted that $$A^{\eta}=-\eta A\eta$$, and $$A^{\eta^*}=-\eta A^*\eta$$, where $$\eta\in\{i,j,k\}$$, and $$A^*$$ is the conjugate transpose of $$A$$, and the map $$A\mapsto A^{\eta^*}$$ is an involution. A matrix $$A\in\mathbb{H}^{n\times n}$$ is called $$\eta$$-Hermitian if $$A^{\eta^*}=A$$ for $$\eta\in\{i,j,k\}$$.
In the paper, the real quaternion matrix equation $A_1X+(A_1X)^{\eta^*}+B_1YB_1^{\eta^*}+C_1ZC_1^{\eta^*}=D_1$ is considered. For the case when $$D_1$$ is $$\eta$$-Hermitian, necessary and sufficient conditions on matrices $$A_1$$, $$B_1$$, $$C_1$$, and $$D_1$$ are established for the equation above to be solvable with respect to the triplet $$(X,Y,Z)$$, where $$Y$$ and $$Z$$ are required to be $$\eta$$-Hermitian. The explicit solution is presented and the minimal ranks of the solutions $$Y$$ and $$Z$$ are found.

### MSC:

 15A24 Matrix equations and identities 15A09 Theory of matrix inversion and generalized inverses 15B57 Hermitian, skew-Hermitian, and related matrices 11R52 Quaternion and other division algebras: arithmetic, zeta functions 15B33 Matrices over special rings (quaternions, finite fields, etc.)
Full Text:

### References:

  DOI: 10.1016/j.sigpro.2004.04.001 · Zbl 1154.94331  DOI: 10.1109/70.127239  DOI: 10.1137/S0895479895270963 · Zbl 0912.93027  Chu DL, SIAM J. Matrix Anal. Appl. 3 pp 1187– (2009)  DOI: 10.1016/S0024-3795(99)00108-1 · Zbl 0959.93032  DOI: 10.1088/0305-4470/33/15/306 · Zbl 0954.81008  DOI: 10.1016/j.mcm.2008.12.014 · Zbl 1171.15310  Deng YP, J. Comput. Math. 23 pp 17– (2005)  DOI: 10.1016/j.laa.2008.03.019 · Zbl 1143.15011  DOI: 10.1109/72.914526  Horn RA, Linear Multilinear Algebra  DOI: 10.1016/j.amc.2010.07.004 · Zbl 1204.15005  DOI: 10.1007/s10114-002-0204-8 · Zbl 1028.15011  DOI: 10.1002/nla.701 · Zbl 1249.15020  DOI: 10.1080/03081087408817070  DOI: 10.1109/TSP.2006.870630 · Zbl 1373.94667  DOI: 10.1016/0024-3795(91)90063-3 · Zbl 0718.15006  DOI: 10.1109/83.760310  DOI: 10.1016/j.jfranklin.2007.05.002 · Zbl 1171.15015  DOI: 10.1016/j.amc.2006.04.032 · Zbl 1109.65037  DOI: 10.1016/S0024-3795(02)00283-5 · Zbl 1023.93012  DOI: 10.1016/j.laa.2010.02.018 · Zbl 1205.15033  DOI: 10.1109/TSP.2008.2010600 · Zbl 1391.93261  DOI: 10.1109/TSP.2010.2048323 · Zbl 1392.94488  DOI: 10.1016/j.sigpro.2010.06.024 · Zbl 1203.94057  DOI: 10.1016/j.aml.2011.04.038 · Zbl 1388.15009  DOI: 10.1016/0167-6911(87)90003-X · Zbl 0623.93028  DOI: 10.1016/j.laa.2008.05.031 · Zbl 1158.15010  DOI: 10.1016/j.laa.2006.01.027 · Zbl 1109.65034  DOI: 10.1016/S0024-3795(97)10099-4 · Zbl 0933.15024  Yuan SF, Electron. J. Linear Algebra 23 pp 257– (2012)  DOI: 10.1016/0024-3795(95)00543-9 · Zbl 0873.15008  DOI: 10.1016/j.laa.2006.08.004 · Zbl 1117.15017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.