×

zbMATH — the first resource for mathematics

On group inverses and the sharp order. (English) Zbl 0619.15006
Various partial orderings have been defined on sets of matrices. For example, the \({}^*\)-order is that \(A<B\) if \(BA^*=AA^*\), \(A^*A=A^*B\). This paper examines the relationships between several orderings of this type.
Reviewer: S.L.Campbell

MSC:
15A09 Theory of matrix inversion and generalized inverses
06F25 Ordered rings, algebras, modules
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arghiriade, E., Sur LES matrices qui sont permutables avec leur inverse generalisée, Atti acad. naz. lincei rend. sci. mat. natur., 35, 244-251, (1965) · Zbl 0122.01703
[2] Drazin, M.P., Natural structures on semigroups with involutions, Bull. amer. math. soc., 84, 139-141, (1978) · Zbl 0395.20044
[3] Drazin, M.P., A partial order in completely regular semigroups, J. algebra, 98, 362-374, (1986) · Zbl 0578.20057
[4] Englefield, M.H., The commuting inverses of a square matrix, Proc. Cambridge philos. soc., 62, 667-671, (1966) · Zbl 0158.03501
[5] Erdelyi, I., On the matrix equation ax=λbx, J. math. anal. appl., 17, 117-132, (1967) · Zbl 0153.04902
[6] Hartwig, R.E., How to order regular elements?, Math. japon., 25, 1-13, (1980) · Zbl 0442.06006
[7] Hartwig, R.E., An application of the Moore Penrose inverse to antisymmetric relations, Proc. amer. math. soc., 78, 181-186, (1980) · Zbl 0444.16005
[8] Hartwig, R.E.; Drazin, M.P., Lattice properties of the * order for matrices, J. math. anal. appl., 86, 359-378, (1982) · Zbl 0485.15014
[9] R.E. Hartwig and J. Luh, Decomposition of an orthogonally complete atomic unit regular ring, to appear.
[10] R.E. Hartwig and G.P.H. Styan, Star order and rank subtractivity (preprint). · Zbl 0603.15001
[11] R.E. Hartwig and G.P.H. Styan, Partially ordered idempotent matrices, to appear.
[12] Holladay, P., Maximal elements and lattice properties of the star partial ordering, chapter VII in unitary matrices, (), unpublished Ph.D. dissertation submitted to
[13] Mitra, S.K., On a generalized inverse of a matrix and applications, Sankhyā ser. A., 30, 107-114, (1968) · Zbl 0169.35002
[14] Mitra, S.K., A new class of g-inverse of square matrices, Sankhyā ser. A., 30, 323-330, (1963) · Zbl 0198.35104
[15] Mitra, S.K., The minus partial order and the shorted matrix, Linear algebra appl., 83, 1-27, (1986) · Zbl 0605.15004
[16] Mitra, S.K.; Odell, P.L., On parallel summability of matrices, Linear algebra appl., 74, 239-255, (1986) · Zbl 0589.15004
[17] Nambooripad, K.S.S., The natural partial order on a regular semigroup, Proc. Edinburgh math. soc., 23, 249-260, (1980) · Zbl 0459.20054
[18] Pearl, M.H., On generalized inverse of matrices, Proc. Cambridge philos. soc., 62, 673-677, (1966) · Zbl 0158.03502
[19] Rao, C.R.; Mitra, S.K., Generalized inverse of matrices and its applications, (1971), Wiley New York
[20] Rao, C.R.; Mitra, S.K.; Bhimasankaram, P., Determination of a matrix by its subclasses of generalized inverses, Sankhyā ser. A., 34, 5-8, (1972) · Zbl 0274.15003
[21] Robert, P., On the group inverse of a linear transformation, J. math. anal. appl., 22, 658-669, (1968) · Zbl 0159.32101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.