×

zbMATH — the first resource for mathematics

Mild solutions for abstract fractional differential equations. (English) Zbl 1276.34004
Summary: We propose a unified functional analytic approach to derive a variation of constants formula for a wide class of fractional differential equations using results on (\(a,k\))-regularized families of bounded and linear operators, which covers as particular cases the theories of \(C_0\)-semigroups and cosine families. Using this approach, we study the existence of mild solutions to fractional differential equations with nonlocal conditions. We also investigate the asymptotic behaviour of mild solutions to abstract composite fractional relaxation equations. We include in our analysis the Basset and Bagley-Torvik equations.

MSC:
34A08 Fractional ordinary differential equations and fractional differential inclusions
34G20 Nonlinear differential equations in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1090/S0002-9947-09-04678-9 · Zbl 1186.60079 · doi:10.1090/S0002-9947-09-04678-9
[2] DOI: 10.1090/S0002-9947-00-02507-1 · Zbl 0947.35023 · doi:10.1090/S0002-9947-00-02507-1
[3] DOI: 10.1016/j.jde.2003.12.002 · Zbl 1068.35037 · doi:10.1016/j.jde.2003.12.002
[4] DOI: 10.1016/S0096-3003(02)00323-5 · Zbl 1037.34004 · doi:10.1016/S0096-3003(02)00323-5
[5] DOI: 10.1142/9789812817747 · doi:10.1142/9789812817747
[6] DOI: 10.1007/s00397-005-0043-5 · doi:10.1007/s00397-005-0043-5
[7] Kilbas, AA, Srivastsava, HM and Trujillo, JJ.Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science, Amsterdam, 2006
[8] DOI: 10.1016/j.jfa.2010.07.007 · Zbl 1203.47021 · doi:10.1016/j.jfa.2010.07.007
[9] Mainardi F, Fractals and Fractional Calculus in Mechanics pp 291– (1997) · doi:10.1007/978-3-7091-2664-6_7
[10] Podlubny I, Fractional Differential Equations 198 (1999)
[11] Samko S, Fractional Integrals and Derivatives: Theory and Applications (1993)
[12] DOI: 10.1016/j.na.2010.07.035 · Zbl 1229.34004 · doi:10.1016/j.na.2010.07.035
[13] DOI: 10.1006/jmaa.1999.6668 · Zbl 0952.45005 · doi:10.1006/jmaa.1999.6668
[14] DOI: 10.1007/978-3-0348-8570-6 · doi:10.1007/978-3-0348-8570-6
[15] Lizama C, Taiwanese J. Math. 7 pp 217– (2003)
[16] DOI: 10.1017/S0308210507000364 · Zbl 1206.47037 · doi:10.1017/S0308210507000364
[17] DOI: 10.1016/0022-1236(89)90116-X · Zbl 0689.47014 · doi:10.1016/0022-1236(89)90116-X
[18] Arendt, W and Kellermann, H. 1987.Integrated Solutions of Volterra Integrodifferential Equations and Applications, Pitman Research Notes in Mathematics Series, Vol. 190, 21–51. New York: Longman, Harlowr. · Zbl 0675.45017
[19] DOI: 10.1007/BF01295306 · Zbl 1011.45006 · doi:10.1007/BF01295306
[20] DOI: 10.1016/S0021-9045(03)00040-6 · Zbl 1032.47024 · doi:10.1016/S0021-9045(03)00040-6
[21] DOI: 10.1007/s00009-004-0010-x · doi:10.1007/s00009-004-0010-x
[22] Shaw SY, Taiwanese J. Math. 10 (2) pp 531– (2006)
[23] Engel KJ, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194 (2000)
[24] Nagy B, Acta Sci. Math. Szeged 36 pp 281– (1974)
[25] Li M, Semigroup Forum 69 pp 356– (2004)
[26] DOI: 10.1155/2009/858242 · Zbl 1200.47059 · doi:10.1155/2009/858242
[27] Bazhlekova, E.Fractional Evolution Equations in Banach Spaces, Thesis, Technische Universiteit Eindhoven, 2001
[28] DOI: 10.1016/j.na.2007.10.004 · Zbl 1166.34033 · doi:10.1016/j.na.2007.10.004
[29] DOI: 10.1007/978-3-0348-5075-9 · doi:10.1007/978-3-0348-5075-9
[30] Diagana T, Electron. J. Qual. Theory Differ. Eqns. 58 pp 1– (2010)
[31] DOI: 10.1016/j.camwa.2009.06.026 · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
[32] DOI: 10.1088/0031-8949/2009/T136/014030 · doi:10.1088/0031-8949/2009/T136/014030
[33] DOI: 10.1115/1.3167615 · Zbl 1203.74022 · doi:10.1115/1.3167615
[34] DOI: 10.1016/j.amc.2004.09.006 · Zbl 1109.65072 · doi:10.1016/j.amc.2004.09.006
[35] DOI: 10.1016/j.aml.2010.06.032 · Zbl 1202.60099 · doi:10.1016/j.aml.2010.06.032
[36] Cuesta E, Discrete Contin. Dyn. Syst. (Suppl.) pp 277– (2007)
[37] DOI: 10.1016/j.aml.2008.02.001 · Zbl 1192.34006 · doi:10.1016/j.aml.2008.02.001
[38] DOI: 10.1007/s00020-010-1799-2 · Zbl 1209.45007 · doi:10.1007/s00020-010-1799-2
[39] DOI: 10.1016/j.jmaa.2008.02.023 · Zbl 1146.43004 · doi:10.1016/j.jmaa.2008.02.023
[40] DOI: 10.1017/S0004972708000713 · Zbl 1183.34122 · doi:10.1017/S0004972708000713
[41] Naber M, Int. J. Differ. Eqns 2010 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.