×

zbMATH — the first resource for mathematics

B-spline collocation algorithm for numerical solution of the generalized Burger’s-Huxley equation. (English) Zbl 1276.65062
The cubic B-spline collocation scheme is implemented to find numerical solutions of the generalized Burger’s-Huxley equation. The scheme is based on the finite-difference formulation for time integration and cubic B-spline functions for space integration. Convergence of the scheme is discussed through standard convergence analysis. The proposed scheme is of second order convergent. The accuracy of the proposed method is demonstrated by four test problems. The numerical results are found to be in good agreement with the exact solutions. Results are compared with other results given in literature.

MSC:
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hodgkin, A Quantitative description of ion currents and its applications to conduction and excitation in nerve membranes, J Physiol 117 pp 500– (1952) · doi:10.1113/jphysiol.1952.sp004764
[2] Satuma, Topics in soliton theory and exactly solvable nonlinear equations (1987)
[3] Wang, Nerve propagation and wall in liquid crystals, Phys Lett 112A pp 402– (1985) · doi:10.1016/0375-9601(85)90411-6
[4] Wang, Solitary wave solutions of the generalised Burger’s-Huxley equation, J Phys A: Math Gen 23 pp 271– (1990) · Zbl 0708.35079 · doi:10.1088/0305-4470/23/3/011
[5] Bratsos, A fourth-order numerical scheme for solving the modified Burger’s equation, Comput Math Appl 60 pp 1393– (2010) · Zbl 1201.65151 · doi:10.1016/j.camwa.2010.06.021
[6] Fitzhugh, Mathematical models of excitation and propagation in nerve (1969) · Zbl 0181.55002
[7] Estévez, Non-classical symmetries and the singular modified the Burger’s and Burger’s-Huxley equation, J Phy A-Math Gen 27 pp 2113– (1994) · Zbl 0838.35114 · doi:10.1088/0305-4470/27/6/033
[8] Efimova, Exact solutions of the Burger’s-Huxley equation, J Appl Math Mech 68 pp 413– (2004) · Zbl 1092.35084 · doi:10.1016/S0021-8928(04)00055-3
[9] Ismail, Adomian decomposition method for Burger’s-Huxley and Burger’s-Fisher equations, Appl Math Comput 159 pp 291– (2004) · Zbl 1062.65110 · doi:10.1016/j.amc.2003.10.050
[10] Hashim, Solving the generalized Burger’s-Huxley equation using the Adomian decomposition method, Math Comput Model 43 pp 1404– (2006) · Zbl 1133.65083 · doi:10.1016/j.mcm.2005.08.017
[11] Hashim, A note on the Adomian decomposition method for the generalized Huxley equation, Appl Math Comput 181 pp 1439– (2006) · Zbl 1173.65340 · doi:10.1016/j.amc.2006.03.011
[12] Batiha, Numerical simulation of the generalized Huxley equation by He’s variational iteration method, Chaos Soliton Fractals 186 pp 1322– (2007) · Zbl 1118.65367
[13] Batiha, Application of variational iteration method to the generalized Burger’s-Huxley equation, Chaos Soliton Fractals 36 pp 660– (2008) · Zbl 1141.49006 · doi:10.1016/j.chaos.2006.06.080
[14] Deng, Travelling wave solutions for the generalized Burger’s-Huxley equation, Appl Math Comput 204 pp 733– (2008) · Zbl 1160.35515 · doi:10.1016/j.amc.2008.07.020
[15] Fahmy, Travelling wave solutions for some time-delayed equations through factorizations, Chaos Soliton Fractals 38 pp 1209– (2008) · Zbl 1152.35438 · doi:10.1016/j.chaos.2007.02.007
[16] Wazwaz, Analytic study on Burger’s, Fisher, Huxley equations and combined forms of these equations, Appl Math Comput 195 pp 754– (2008) · Zbl 1132.65098 · doi:10.1016/j.amc.2007.05.020
[17] Molabahrami, The homotopy analysis method to solve the Burger’s-Huxley equation, Nonlinear Analysis: Real World Appl 10 pp 589– (2009) · Zbl 1167.35483 · doi:10.1016/j.nonrwa.2007.10.014
[18] Bataineh, Analytical treatment of generalized Burger’s-Huxley equation by homotopy analysis method, Bull Malays Math Sci Soc 32 pp 233– (2009) · Zbl 1173.35650
[19] Gao, New exact solutions to the generalized Burger’s-Huxley equation, Appl Math Comput 217 pp 1598– (2010) · Zbl 1202.35220 · doi:10.1016/j.amc.2009.07.020
[20] Javidi, A numerical solution of the generalized Burger’s-Huxley equation by spectral method, Appl Math Comput 178 pp 338– (2006) · Zbl 1100.65081 · doi:10.1016/j.amc.2005.11.051
[21] Javidi, A new domain decomposition algorithm for generalized Burger’s-Huxley equation based on Chebyshev polynomials and preconditioning, Chaos Soliton Fractals 39 pp 849– (2009) · Zbl 1197.65153 · doi:10.1016/j.chaos.2007.01.099
[22] Darvishi, Spectral collocation method and Darvishi’s preconditionings to solve the generalized Burger’s-Huxley equation, Commun Nonlinear Sci Numer Simul 13 pp 2091– (2008) · Zbl 1221.65261 · doi:10.1016/j.cnsns.2007.05.023
[23] Kaushik, A uniformly convergent numerical method on non-uniform mesh for singularly perturbed unsteady Burger’s-Huxley equation, Appl Math Comput 195 pp 688– (2008) · Zbl 1136.65085 · doi:10.1016/j.amc.2007.05.067
[24] Sari, Numerical solutions of the generalized Burger’s-Huxley equation by a differential quadrature method (DQM), Math Prob Eng 2009
[25] Khattak, A computational meshless method for the generalized Burger’s-Huxley equation, Appl Math Model 33 pp 3718– (2009) · Zbl 1185.65191 · doi:10.1016/j.apm.2008.12.010
[26] Tomasiello, Numerical solutions of the Burger’s-Huxley equation by the IDQ method, Int J Comput Math 87 pp 129– (2010) · Zbl 1182.65162 · doi:10.1080/00207160801968762
[27] Gupta, A singular perturbation approach to solve Burger’s-Huxley equation via monotone finite difference scheme on layer-adaptive mesh, Commun Nonlinear Sci Numer Simul 16 pp 1825– (2011) · Zbl 1221.65221 · doi:10.1016/j.cnsns.2010.07.020
[28] Rathish Kumar, A numerical study of singularly perturbed generalized Burger’s-Huxley equation using three-step Taylor-Galerkin method, Comput Math Appl 62 pp 776– (2011) · Zbl 1228.65189 · doi:10.1016/j.camwa.2011.06.007
[29] Macías-Díaz, The numerical solution of a generalized Burger’s-Huxley equation through a conditionally bounded and symmetry-preserving method, Comput Math Appl 62 pp 3330– (2011) · Zbl 1222.65095 · doi:10.1016/j.camwa.2011.04.022
[30] Sari, High-order finite difference schemes for numerical solutions of the generalized Burger’s-Huxley equation, Numer Methods Partial Diff Eq 27 pp 1313– (2011) · Zbl 1226.65078 · doi:10.1002/num.20585
[31] Bratsos, A fourth order improved numerical scheme for the Generalized Burger’s-Huxley equation, Am J Comput Math 1 pp 152– (2011) · Zbl 1229.35240 · doi:10.4236/ajcm.2011.13017
[32] Zhou, A linearly semi-implicit compact scheme for the Burger’s-Huxley equation, Int J Comput Math 88 pp 795– (2011) · Zbl 1213.65122 · doi:10.1080/00207161003743391
[33] Jain, Numerical solution of differential equations, 2nd Ed. (1984) · Zbl 0536.65004
[34] Prenter, Splines and variational methods (1975)
[35] Henrici, Discrete variable methods in ordinary differential equations (1962) · Zbl 0112.34901
[36] Kadalbajoo, A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection-diffusion problem, J Comput App Math 220 pp 271– (2008) · Zbl 1149.65085 · doi:10.1016/j.cam.2007.08.016
[37] Stoer, An introduction to numerical analysis (1991)
[38] Rudin, Principles of mathematical analysis (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.