×

zbMATH — the first resource for mathematics

Fourth- and fifth-order methods for solving nonlinear systems of equations: an application to the global positioning system. (English) Zbl 1275.65028
Summary: Two iterative methods of order four and five, respectively, are presented for solving systems of nonlinear equations. Numerical comparisons are made with other existing second- and fourth-order schemes to solve the nonlinear system of equations of the global positioning system and some academic nonlinear systems.

MSC:
65H10 Numerical computation of solutions to systems of equations
68U35 Computing methodologies for information systems (hypertext navigation, interfaces, decision support, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ostrowski, A. M., Solution of Equations and Systems of Equations, (1964), Englewood Cliffs, NJ, USA: Prentice-Hall, Englewood Cliffs, NJ, USA · Zbl 0138.09602
[2] Kantorovič, L. V., Functional analysis and applied mathematics, Uspekhi Matematicheskikh Nauk, 3, 89-185, (1948) · Zbl 0034.21203
[3] Weerakoon, S.; Fernando, T. G. I., A variant of Newton’s method with accelerated third-order convergence, Applied Mathematics Letters, 13, 8, 87-93, (2000) · Zbl 0973.65037
[4] Özban, A. Y., Some new variants of Newton’s method, Applied Mathematics Letters, 17, 6, 677-682, (2004) · Zbl 1065.65067
[5] Gerlach, J., Accelerated convergence in Newton’s method, SIAM Review, 36, 2, 272-276, (1994) · Zbl 0814.65046
[6] Cordero, A.; Torregrosa, J. R., Variants of Newton’s method for functions of several variables, Applied Mathematics and Computation, 183, 1, 199-208, (2006) · Zbl 1123.65042
[7] Cordero, A.; Torregrosa, J. R., Variants of Newton’s method using fifth-order quadrature formulas, Applied Mathematics and Computation, 190, 1, 686-698, (2007) · Zbl 1122.65350
[8] Frontini, M.; Sormani, E., Third-order methods from quadrature formulae for solving systems of nonlinear equations, Applied Mathematics and Computation, 149, 3, 771-782, (2004) · Zbl 1050.65055
[9] Cordero, A.; Torregrosa, J. R., On interpolation variants of Newton’s method for functions of several variables, Journal of Computational and Applied Mathematics, 234, 1, 34-43, (2010) · Zbl 1201.65077
[10] Darvishi, M. T.; Barati, A., A fourth-order method from quadrature formulae to solve systems of nonlinear equations, Applied Mathematics and Computation, 188, 1, 257-261, (2007) · Zbl 1118.65045
[11] Darvishi, M. T., Some three-step iterative methods free from second order derivative for finding solutions of systems of nonlinear equations, International Journal of Pure and Applied Mathematics, 57, 4, 557-573, (2009) · Zbl 1195.65068
[12] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, (1994), Dordrecht, The Netherlands: Kluwer Academic, Dordrecht, The Netherlands · Zbl 0802.65122
[13] Babajee, D. K. R.; Dauhoo, M. Z.; Darvishi, M. T.; Barati, A., A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule, Applied Mathematics and Computation, 200, 1, 452-458, (2008) · Zbl 1160.65018
[14] Darvishi, M. T.; Barati, A., A third-order Newton-type method to solve systems of nonlinear equations, Applied Mathematics and Computation, 187, 2, 630-635, (2007) · Zbl 1116.65060
[15] Darvishi, M. T.; Barati, A., Super cubic iterative methods to solve systems of nonlinear equations, Applied Mathematics and Computation, 188, 2, 1678-1685, (2007) · Zbl 1119.65045
[16] Cordero, A.; Martínez, E.; Torregrosa, J. R., Iterative methods of order four and five for systems of nonlinear equations, Journal of Computational and Applied Mathematics, 231, 2, 541-551, (2009) · Zbl 1173.65034
[17] Traub, J. F., Iterative Methods for the Solution of Equations, (1982), New York, NY, USA: Chelsea Publishing, New York, NY, USA · Zbl 0472.65040
[18] Babajee, D. K. R.; Dauhoo, M. Z.; Darvishi, M. T.; Karami, A.; Barati, A., Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations, Journal of Computational and Applied Mathematics, 233, 8, 2002-2012, (2010) · Zbl 1204.65050
[19] Sharma, J. R.; Guha, R. K.; Sharma, R., An efficient fourth order weighted-Newton method for systems of nonlinear equations, Numerical Algorithms, 62, 2, 307-323, (2013) · Zbl 1283.65051
[20] Cordero, A.; Hueso, J. L.; Martínez, E.; Torregrosa, J. R., A modified Newton-Jarratt’s composition, Numerical Algorithms, 55, 1, 87-99, (2010) · Zbl 1251.65074
[21] Kung, H. T.; Traub, J. F., Optimal order of one-point and multipoint iteration, Journal of the Association for Computing Machinery, 21, 643-651, (1974) · Zbl 0289.65023
[22] Jarrat, P., Some fourth order multipoint iterative methods for solving equations, Mathematics of Computation, 20, 434-437, (1966) · Zbl 0229.65049
[23] King, R. F., A family of fourth order methods for nonlinear equations, SIAM Journal on Numerical Analysis, 10, 876-879, (1973) · Zbl 0266.65040
[24] Arroyo, V.; Cordero, A.; Torregrosa, J. R., Approximation of artificial satellites’ preliminary orbits: the efficiency challenge, Mathematical and Computer Modelling, 54, 7-8, 1802-1807, (2011) · Zbl 1235.70032
[25] Cordero, A.; Torregrosa, J. R.; Vassileva, M. P., Pseudocomposition: a technique to design predictor-corrector methods for systems of nonlinear equations, Applied Mathematics and Computation, 218, 23, 11496-11504, (2012) · Zbl 1278.65067
[26] Tsui, J. B. Y., Fundamentals of Global Positioning System Receivers, A Software Approach, (2005), Wiley Interscience
[27] Sun, X.; Ji, Y.; Shi, H.; Li, Y., Evaluation of two methods for three satellites position of GPS with altimeter aiding, Proceedings of the 5th International Conference on Information Technology and Applications (ICITA ’08)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.