zbMATH — the first resource for mathematics

Toward a unification of the various techniques used to integrate nonlinear partial differential equations: Bäcklund and Darboux transformations vs. dressing method. (English) Zbl 0621.35095
After a historical survey on integrable nonlinear partial differential equations, we briefly review three methods often used to obtain their exact solutions, i.e. the Bäcklund transformation, the Darboux transformation and the dressing method introduced by Zakharov and Shabat in 1979. Then we elucidate their interrelations.

35Q99 Partial differential equations of mathematical physics and other areas of application
35G20 Nonlinear higher-order PDEs
35A30 Geometric theory, characteristics, transformations in context of PDEs
35C05 Solutions to PDEs in closed form
Full Text: DOI
[1] Korteweg, D.J.; Vries, G.De, Philos. magazine, 39, 422-443, (1895), Ser. 5 N^{O}
[2] Boussinesq, J., J. math. pures appl., 17, 55-108, (1872), Ser. 2 N^{O}
[3] Bianchi, L.; Spoerri, Lezioni di geometria differenziale, (1894), Pisa
[4] Darboux, G., Leçons sur la theorie generale des surfaces et LES applications geometriques du calcul infinitesimal, Vol. III, (1894), Gauthier-Villars Paris · JFM 25.1159.02
[5] Bäcklund, A.V., Om ytor med konstant negativ krökning, t. XIX, (1883), Lund Univ. Arsskrift
[6] Rubinstein, J., J. math. phys., 11, 258-266, (1970)
[7] Bianchi, L., Ann. R. scuola normale superiore Pisa, 2, 285-340, (1879)
[8] Fermi, E.; Pasta, J.R.; Ulam, S.M., Studies of non-linear problems, (), 977-988
[9] Zabusky, N.J.; Kruskal, M.D., Phys. rev. lett., 15, 240-243, (1965)
[10] Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M., Phys. rev. lett., 19, 1095-1097, (1967)
[11] Calogero, F.; Degasperis, A., Spectral transform and solitons: tools to solve and investigate non-linear evolution equations, Vol. 1, (1982), North-Holland Press Co Amsterdam · Zbl 0501.35072
[12] Zakharov, V.E.; Faddeev, L.D.; Zakharov, V.E.; Faddeev, L.D., Func. anal. appl., Funk. anal. pril., 5, 18-27, (1971), in Russian
[13] Lax, P.D., Comm. pure appl. math., 21, 467-490, (1968)
[14] Bruschi, M.; Ragnisco, O.; Adler, M., Lett. nuovo cimento, Inv. math., 50, 219-248, (1979)
[15] Zakharov, V.E.; Shabat, A.B.; Zakharov, V.E.; Shabat, A.B., Func. anal. appl., Funk. anal. pril., 13, 13-22, (1979), in Russian
[16] Muskelishvili, N.I., Singular integral equations, (1953), Noordhoff Groningen
[17] Zakharov, V.E.; Shabat, A.B.; Zakharov, V.E.; Shabat, A.B.; Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H., Sov. phys. JETP, Zh. exp. theor. fiz., Stud. appl. math., 53, 249-315, (1974), in Russian
[18] Levi, D.; Levi, D.; Sym, A.; Wojciechowski, S., J. phys. A: math. & gen., J. phys. A: math. & gen., 16, 2423-2432, (1983) · Zbl 0548.35098
[19] Levi, D.; Ragnisco, O.; Bruschi, M.; Choodnovsky, D.V.; Choodnovsky, G.V., Il nuovo cimento, Il nuovo cimento, 40B, 339-353, (1977)
[20] Bruschi, M.; Levi, D.; Ragnisco, O.; Bruschi, M.; Ragnisco, O., Phys. lett., Il nuovo cimento, 88B, 119-139, (1985)
[21] Ichikawa, Y.H.; Konno, K.; Wadati, M., New integrable non-linear evolution equations leading to exotic solitons, (), 345-365
[22] Kruskal, M.D., Non-linear wave equations, (), 310-354
[23] Zakharov, V.E.; Mikhailov, A.V.; Zakharov, V.E.; Mikhailov, A.V., Sov. phys. JETP, Zh. eksp. theor. fiz., 74, 1953-1973, (1978), in Russian
[24] Takhtajan, L.A., Phys. lett., 64A, 235-237, (1977)
[25] Kadomtsev, B.B.; Petviashvili, V.I.; Kadomtsev, B.B.; Petviashvili, V.I., Sov. phys. dokl., Dokl. akad. nauk SSSR, 192, 753-756, (1970), in Russian
[26] Levi, D.; Ragnisco, O.; Sym, A., Lett. nuovo cimento, 33, 401-406, (1982)
[27] Darboux, G., C.R. acad. sci. Paris, 94, 1456-1460, (1882)
[28] Levi, D.; Ragnisco, O.; Sym, A., Il nuovo cimento, 83B, 36-42, (1984)
[29] Hirota, R., Direct method of finding exact solutions of non-linear evolution equations, (), 40-68
[30] Pöppe, C., Physica, 9D, 103-139, (1983)
[31] Fokas, A.S.; Ablowitz, M.J., Phys. rev. lett., 47, 1096-1100, (1981), Santini, P.M., Ablowitz, M.J. and Fokas, A.S.: The direct linearization of a class of non-linear evolution equations, INS≠35 Clarkson College of Technology, submitted to J. Math. Phys.
[32] Boiti, M.; Pempinelli, F.; Tu, G.Z., Phys. lett., 93A, 107-110, (1983)
[33] Fokas, A.S.; Ablowitz, M.J., Lecture on the inverse scattering transform for multidimensional (2+1) models, () · Zbl 0505.76031
[34] Levi, D.; Ragnisco, O.; Bruschi, M., Il nuovo cimento, 58A, 56-66, (1980)
[35] Sym, A.; Corones, J., Phys. lett., 68A, 305-307, (1978)
[36] Mikhailov, A.V., Physica, 3D, 73-117, (1981)
[37] Neugebauer, G.; Neugebauer, G.; Meinel, R., Determinant representation of the n-fold AKNS Bäcklund transformations and a separation of the Gel’fand-levitan-marchenko equation, J. phys. A: math. & gen., 13, 19-21, (10/10/83), Friedrich-Schiller University Jena, submitted to Physica D on October 1982
[38] Wadati, M.; Sanuki, H.; Konno, K., Progr. theor. phys., 53, 419-436, (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.