×

Coherent Mori domains and the principal ideal theorem. (English) Zbl 0622.13007

Most of this paper concerns domains satisfying PIT, i.e. the conclusion of the principal ideal theorem. New classes of such domains are found, e.g. Mori such that divisorial primes P with \(ht(P)>1\) are f.g. All overrings (in the quotient field) of a domain R satisfy PIT if and only if they have \(\cap I^ n=0\quad\) for all proper principal ideals I. Call a domain quasicoherent (resp. finite conductor) if intersections of finitely many (resp. two) principal ideals are f.g. Our domain R is Noetherian if and only if \(ht(P)<\infty\) and R/P is quasicoherent Mori for all primes P. For finite conductor domains, Mori implies PIT, integrally closed Mori is equivalent to Krull, and Mori with proper overrings satisfying PIT implies 1-dimensional Noetherian. Many criteria are given for a PIT domain to be 1-dimensional, e.g. Spec being a tree. For domains of global dimension 2 it is found that Mori is equivalent to Noetherian. Discussion of the stability of PIT embraces polynomial extensions of R, especially when \(\dim (R)=1\). If R[X] satisfies PIT then so does R and R is an S-domain in the sense of I. Kaplansky [”Commutative rings” (2nd edition 1974; Zbl 0296.13001)].
Reviewer: C.P.L.Rhodes

MSC:

13E99 Chain conditions, finiteness conditions in commutative ring theory
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations

Citations:

Zbl 0296.13001
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anderson D.D., Pacific J. Math 66 pp 15– (1976)
[2] DOI: 10.4153/CJM-1980-029-2 · Zbl 0406.13001
[3] DOI: 10.1016/0021-8693(71)90058-5 · Zbl 0218.13019
[4] DOI: 10.1080/00927878308822944 · Zbl 0518.13012
[5] Barucci V., J. Algebra 11 (1983)
[6] DOI: 10.4153/CMB-1984-053-1 · Zbl 0513.13005
[7] Barucci V., How far is a Mori domain from being a Krull domain · Zbl 0623.13008
[8] Bouvier A., Universally catenarian integral domains · Zbl 0695.13014
[9] Bouvier A., Lecture Notes in Math
[10] DOI: 10.1080/00927877408548715 · Zbl 0285.13001
[11] DOI: 10.1016/0021-8693(84)90044-9 · Zbl 0531.13002
[12] Fossum R.M., The divisor class group of a Krull domain (1973) · Zbl 0256.13001
[13] DOI: 10.1090/S0002-9939-1974-0335500-0
[14] Gilmer R., Multiplicative ideal theory (1972) · Zbl 0248.13001
[15] DOI: 10.1016/0022-4049(82)90009-3 · Zbl 0495.13002
[16] Heinzer W., J. Reine Angew. Math 241 pp 147– (1970)
[17] Kaplansky I., Commutative rings (1974)
[18] DOI: 10.1016/0022-4049(83)90096-8 · Zbl 0536.13001
[19] Matsumura H., Commutative algebra (1970)
[20] Nagata M., J. Math. Kyoto Univ 5 pp 163– (1966)
[21] Nishimura J., J. Math. Kyoto Univ 15 pp 397– (1975)
[22] Ohm J., Trans. Amer. Math. Soc 122 pp 321– (1966)
[23] Querré J., Bull. Se. Math 95 pp 341– (1971)
[24] DOI: 10.4153/CJM-1975-127-5 · Zbl 0335.13010
[25] DOI: 10.1016/0021-8693(80)90146-5 · Zbl 0441.13012
[26] Raillard, N. 1978.Sur les anneaux de Mori, A Vol. 286, 405–407. Paris: C.R. Acad. Sc. · Zbl 0374.13012
[27] DOI: 10.2307/2373501 · Zbl 0198.06003
[28] Sheldon P., Trans. Amer. Math. Soc 199 pp 233– (1971)
[29] DOI: 10.1016/0021-8693(73)90057-4 · Zbl 0275.13008
[30] Sheng H., Proc. Amer. Math. Soc 35 pp 381– (1973)
[31] DOI: 10.1090/S0002-9939-1972-0308115-6
[32] Vasconcelos W.V., Lecture Notes in Pure Appl. Math 22 (1976)
[33] Zariski O., Commutative algebra (1960)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.