×

Springer’s Weyl group representations through characteristic classes of cone bundles. (English) Zbl 0624.14015

A nilpotent orbit \({\mathcal O}_ u\) in a complex semisimple Lie algebra gives rise to a collection of cone bundles on the flag variety, by taking the closed components of its preimage under Springer’s resolution of singularities. Using the generalization of inverse Chern classes of vector bundles to Segre classes of cone bundles due to Fulton and the third author, we attach to each such cone bundle a characteristic class in the cohomology of the flag variety, which is interpreted as a harmonic polynomial on the Cartan subalgebra. Using the intersection homology approach to the study of nilpotent varieties as by W. Borho and R. MacPherson in Astérisque 101-102, 23-74 (1983; Zbl 0576.14046) and C. R. Acad. Sci., Paris, Sér. I 292, 707-710 (1981; Zbl 0467.20036) we show that this collection of polynomials transforms under the action of the Weyl group according to Springer’s irreducible representation \(\rho_ u\) which is usually constructed from \({\mathcal O}_ u\) by quite different means.

MSC:

14F99 (Co)homology theory in algebraic geometry
14M15 Grassmannians, Schubert varieties, flag manifolds
20G05 Representation theory for linear algebraic groups
20G10 Cohomology theory for linear algebraic groups
57R20 Characteristic classes and numbers in differential topology
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Alvis, D., Lusztig, G.: On Springer’s correspondence for simple groups of typeE n (n-6, 7, 8). Math. Proc. Cambridge Philos. Soc.92, 65-78 (1982) · Zbl 0492.20028
[2] Baum, P., Fulton, W., MacPherson, R.: Riemann-Roch and topologicalK-theory for singular varieties. Acta Math.143, 155-192 (1979) · Zbl 0474.14004
[3] Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque100 (1983) · Zbl 0536.14011
[4] Berthelot, P., Grothendieck, A., Illusie, L.: Théorie des intersections et théorème de Riemann-Roch. Sém. Géom. Alg. du Bois Maris 1966/67. Lect Notes Math. 225. Berlin, Heidelberg, New York: Springer 1971
[5] Beynon, W.M., Spaltenstein, N.: Green functions of finite Chevalley groups of typeE n (n=6,7,8). J. Algebra.88, 584-614 (1984) · Zbl 0539.20025
[6] Borel A.: Topics in the homology theory of fibre bundles. Lect. Notes Math. 36, Berlin, Heidelberg, New York: Springer 1967 · Zbl 0158.20503
[7] Borho, W., Brylinski, J.-L.: Differential operators on homogeneous spaces I. Invent. Math.69, 437-476 (1982) · Zbl 0504.22015
[8] Borho, W., Brylinski, J.-L.: Differential operators on homogeneous spaces. III. Invent. Math.80, 1-68 (1985) · Zbl 0577.22014
[9] Borho, W., Brylinski, J.-L., MacPherson, R.: Open problems in algebraic groups, Hotta, R., Kawanaka N. (eds.). Katata, Japan. Taniguchi Foundation 1983
[10] Borho, W., Brylinski, J.-L., MacPherson, R.: A note on primitive ideals and characteristic classes. In. Geometry today. Arbarello, E., Procesi, C., Strickland, E.(eds.), pp. 11-20. Boston, Basel, Stuttgart: Birkhäuser 1985 · Zbl 0576.17007
[11] Borho, W., Brylinski, J.-L., MacPherson, R.: EquivariantK-theory approach to nilpotent orbits. IHES preprint M/86/13, 1986 and BUGH Wuppertal, 1986
[12] Borho, W., MacPherson, R.: Représentations des groupes de Weyl et homologic d’intersection pour les variétés nilpotentes. C.R. Acad. Sci. Paris (A)292, 707-710 (1981) · Zbl 0467.20036
[13] Borho, W., MacPherson, R.: Partial resolutions of nilpotent varieties. In: Analyse et topologie sur les espaces singuliers. Astérisque101, 23-74 (1983) · Zbl 0576.14046
[14] Fulton, W.: Intersection theory. Berlin, Heidelberg, New York: Springer 1984 · Zbl 0541.14005
[15] Fulton, W., Lang, S.: Riemann-Roch algebra Berlin, Heidelberg, New York: Springer 1985
[16] Fulton, W., MacPherson, R.: Intersecting cycles on an algebraic, variety. In: Real and complex singularities. Holm, P. (ed.), Oslo 1976 Alphen a. d. Rijn: Sijthoff and Nordhoff 1977 · Zbl 0385.14002
[17] Goresky, M., MacPherson, R.: Intersection homology theory. Topology19, 135-162 (1980) · Zbl 0448.55004
[18] Goresky, M., MacPherson, R.: Intersection homology. II. Invent. Math.72, 77-130 (1983) · Zbl 0529.55007
[19] Hiller, H.: Geometry of Coxeter groups Res. Notes Math. 54. Boston, London, Melbourne: Pitman 1982 · Zbl 0483.57002
[20] Hotta, R.: On Springer’s representations. J. Fac. Sci. Univ. Tokyo, IA28, 863-876 (1982) · Zbl 0584.20033
[21] Hotta, R.: On Joseph’s construction of Weyl group representations. Tohoku Math. J.36, 49-74 (1984) · Zbl 0545.20029
[22] Joseph, A.: On the variety of a highest weight module. J. Algebra,88, 238-278 (1984) · Zbl 0539.17006
[23] Kazhdan, D. Lusztig, G.: A topological approach to Springer’s representations. Adv. Math.38, 222-228 (1980) · Zbl 0458.20035
[24] Lusztig, G.: Green polynomials and singularities of unipotent classes. Adv. Math.42, 169-178 (1981) · Zbl 0473.20029
[25] Manin, Y.: Lectures on theK-functor in algebraic geometry. Russ. Math. Surv.24, 1-89 (1969) · Zbl 0204.21302
[26] Marlin, R.: Thèse. Nice 1979
[27] Shoji, T.: On the Springer representations of the Weyl groups of classical algebraic groups. Commun. Algebra7, 1713-1745 (1979); correction in Commun. Algebra7, 2027-2033 (1979) · Zbl 0423.20042
[28] Shoji, T.: On the Springer representations of Chevalley groups of typeF. Commun. Algebra8, 409-440 (1980) · Zbl 0434.20026
[29] Slodowy, P.: Four lectures on simple groups and singularities. Commun. Math. Inst. Rijksuniv. Utr.11 (1980) · Zbl 0425.22020
[30] Spaltenstein, N.: On the generalized Springer correspondence for exceptional groups. Advanced Studies in Pure Math. 6, 317-338. Algebraic groups and related topics. Hotta, R. (ed.); Amsterdam, New York, Oxford: North-Holland 1985
[31] Spaltenstein, N.: On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology16, 203-204 (1977) · Zbl 0445.20021
[32] Springer, T.A.: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Invent. Math.36, 173-207 (1976) · Zbl 0374.20054
[33] Springer, T.A.: A construction of representations of Weyl groups. Invent. Math.44, 279-293 (1978) · Zbl 0376.17002
[34] Steinberg, R.: On the desingularization of the unipotent variety. Invent. Math.36, 209-224 (1976) · Zbl 0352.20035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.