×

An engineer’s guide to soliton phenomena: Application of the finite element method. (English) Zbl 0624.76020

(Authors’ abstract.) The paper attempts an elementary survey of the physical and mathematical background appertaining to solitons and discusses in particular the numerical solution of three types of dispersive nonlinear partial differential equations exhibiting soliton- type solutions, namely the Korteweg-de Vries equation, the nonlinear Schrödinger equation, and the Sine-Gordon equation. Throughout this study a semidiscrete Galerkin method is applied using a finite element discretization in space and a step-by-step time integration of the resulting system of nonlinear ordinary differential equations. Depending upon the special type of the evolutionary equation the application of a Petrov-Galerkin procedure may increase significantly the numerical stability. Accuracy and effectivity of the different approaches are demonstrated on a series of computer plots.
Reviewer: H.Lange

MSC:

76B25 Solitary waves for incompressible inviscid fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Zabusky, N.J.; Kruskal, M.D., Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. rev. lett., 15, 240-243, (1965) · Zbl 1201.35174
[2] Mitchell, A.R.; Schoombie, S.W., Finite element studies of solitons, (), 465-488 · Zbl 0569.76031
[3] Fletcher, C.A.J., Computational Galerkin methods, (1984), Springer New York · Zbl 0533.65069
[4] Christie, I.; Griffiths, D.F.; Mitchell, A.R.; Sanz-Serna, J.M., Product approximation for non-linear problems in the finite element method, IMA J. numer. anal., 1, 253-266, (1981) · Zbl 0469.65072
[5] Abia, L.; Sanz-Serna, J.M., On the use of the product-approximation technique in nonlinear Galerkin methods, Internat. J. numer. meths. engrg., 20, 4, 778-779, (1984) · Zbl 0533.65070
[6] Alexander, M.E.; Morris, J.Ll., Galerkin methods applied to some model equations for nonlinear dispersive waves, J. comput. phys., 30, 428-451, (1979) · Zbl 0407.76014
[7] Sanz-Serna, J.M.; Christie, I., Petrov-Galerkin methods for nonlinear dispersive waves, () · Zbl 0451.65086
[8] Schoombie, S.W., Finite element methods for the Korteweg-de Vries equation I. Galerkin method with Hermite cubics, () · Zbl 0539.65067
[9] Hedstrom, G.W., The Galerkin method based on Hermite cubics, SIAM J. numer. anal., 16, 385-393, (1979) · Zbl 0414.65058
[10] Bullough, R.K.; Caudrey, P.J., The soliton and its history, (), 1-64 · Zbl 0847.35120
[11] Herbst, B.M.; Mitchell, A.R.; Weideman, J.A.C., On the stability of the nonlinear Schrödinger equation, J. comput. phys., 60, 263-286, (1985) · Zbl 0589.65083
[12] Zakharov, V.E.; Shabat, A.B., Exact theory of the two-dimensional self focusing and the one-dimensional self modulation of waves in nonlinear media, Soviet phys. JETP, 34, 62-69, (1972)
[13] Griffiths, D.F.; Mitchell, A.R.; Morris, J.Ll., A numerical study of the nonlinear Schrödinger equation, Comput. meths. appl. mech. engrg., 45, 177-215, (1984) · Zbl 0555.65060
[14] Sanz-Serna, J.M.; Manoranjan, V.S., A method for the integration in time of certain partial differential equations, J. comput. phys., 52, 2, 273-289, (1983) · Zbl 0514.65085
[15] J.M. Sanz-Serna and J.G. Verwer, Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation, IMA J. Numer. Anal. (to appear). · Zbl 0593.65087
[16] Herbst, B.M.; Morris, J.Ll.; Mitchell, A.R., Numerical experience with the nonlinear Schrödinger equation, J. comput. phys., 60, 282-305, (1985) · Zbl 0589.65084
[17] J.M. Sanz-Serna and I. Christie, A simple adaptive technique for nonlinear wave problems, J. Comput. Phys. (to appear). · Zbl 0653.65087
[18] M.A. Revilla, Simple time and space adaptation in one-dimensional evolutionary partial differential equations, Internat. J. Numer. Meths. Engrg. (to appear). · Zbl 0658.65127
[19] Seeger, A.; Donth, H.; Kochendörfer, A., Theorie der versetzungen in eindimensionalen atomreihen, Z. phys., 134, 173-193, (1953) · Zbl 0050.44808
[20] Seeger, A., Solitons in crystals, () · Zbl 0555.73007
[21] Bianchi, L., Vorlesungen über differentialgeometrie, (1910), Teubner Leibzig · JFM 41.0676.01
[22] Lambert, J.D., Computational methods in ordinary differential equations, (1973), Wiley London · Zbl 0258.65069
[23] Collatz, L., The numerical treatment of differential equations, (1966), Springer Berlin · Zbl 0221.65088
[24] Dodd, R.K.; Eilbeck, J.C.; Gibbon, J.D.; Morris, H.C., Solitons and nonlinear wave equations, (1982), Academic Press London · Zbl 0496.35001
[25] Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M., Method for solving the Korteweg-de Vries equation, Phys. rev. lett., 19, 1095-1097, (1967) · Zbl 1061.35520
[26] Miura, R.M., The Korteweg-de Vries equation: A survey of results, SIAM rev., 18, 3, 412-459, (1976) · Zbl 0333.35021
[27] Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M., Korteweg-de Vries equation and generalisations VI. methods for exact solution, Comm. pure appl. math., 27, 97-133, (1974) · Zbl 0291.35012
[28] Lamb, G.L., Elements of soliton theory, (1980), Wiley New York · Zbl 0445.35001
[29] Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. rev. lett., 27, 1192-1194, (1971) · Zbl 1168.35423
[30] Witham, G.B., Linear and nonlinear waves, (1974), Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.