×

zbMATH — the first resource for mathematics

The stability of rotating vortex patches. (English) Zbl 0624.76055
The paper mainly deals with nonlinear stability of rotating vortex patches. The stability is studied by using variational methods and spectral analysis. Several theorems are established, which generalize previous results obtained by Arnold. The cases of: (i) Kirchhoff vortex; (ii) finite Kelvin waves, are specially examined as applications. Many references are given, which relate this work to pevious works by Arnold, Benjamin and others.
Reviewer: P.A.Bois

MSC:
76E30 Nonlinear effects in hydrodynamic stability
76B47 Vortex flows for incompressible inviscid fluids
35P99 Spectral theory and eigenvalue problems for partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abraham, R., Marsden,: Foundation of mechanics. Second edition Reading, MA: Addison-Wesley 1978 · Zbl 0393.70001
[2] Aref, H.: Integrable, chaotic and turbulent vortex motion in two-dimensional flows. Ann. Rev. Fluid Mech.15 (1983) · Zbl 0562.76029
[3] Arnol’d, V. I.: Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Sov. Math. Dokl.6, 773-777 (1965) · Zbl 0141.43901
[4] Arnol’d, V. I.: On an a priori estimate in the theory of hydrodynamical stability. Trans. Am. Math. Soc.79, 267-269 (1969)
[5] Benjamin, T. B.: The alliance of practical and analytic insights into the nonlinear problems of fluid mechanics. Applications of methods of functional analysis to problems of mechanics. Lecture Notes in Mathematics, No.503, Berlin, Heidelberg, New York 1976, pp. 8-29
[6] Benjamin, T. B.: Impulse, flow force and variational principles. IMA J. Appl. Math.32, 3-68 (1984) · Zbl 0584.76001 · doi:10.1093/imamat/32.1-3.3
[7] Burbea, J., Landau, M.: The Kelvin waves in vortex dynamics and their stability. J. Comput. Phys.45, 127-156 (1982) · Zbl 0488.76023 · doi:10.1016/0021-9991(82)90106-1
[8] Deem, G. S., Zabusky, N. J.: Vortex waves: stationary ?V-states?, interactions, recurrence, and breaking. Phy. Rev. Lett.40, 859-62 (1978) · doi:10.1103/PhysRevLett.40.859
[9] Dritschel, D. G.: Steady state structures of co-rotating uniform vortices (preprint). Princeton University, 1984
[10] Dritschel, D. G.: The stability and energetics of co-rotating uniform vortices (preprint), 1984
[11] Dritschel, D. G.: The nonlinear stability of co-rotating uniform vortices (preprint), 1984
[12] Gohberg, I. C., Krein, M. G.: Introduction to the theory of linear nonselfadjoint operators. Transl. Math. Monogr.18, (1969) · Zbl 0181.13504
[13] Gromoll, D., Meyer, W.: On differentiable functions with isolated critical points. Topology8, 361-369 (1969) · Zbl 0212.28903 · doi:10.1016/0040-9383(69)90022-6
[14] Holm, D., Marsden, J., Ratiu, T., Weinstein, A.: Nonlinear stability of fluid and plasma equilibria. Phys. Rep.123, 1-116 (1985) · Zbl 0717.76051 · doi:10.1016/0370-1573(85)90028-6
[15] Kelvin, Lord: On the stability of steady and of periodic fluid motion. Philes Mag. (5)23, 529-39 (1887)
[16] Krein, M. G.: A generalization of several investigations of A. M. Liapunov on linear differential equations with periodic coefficients. Dokl. Akad. Nauk. SSSR73, 445-448
[17] Lamb, H.: Hydrodynamics. New York: Dover publications 1945
[18] Love, A. E. H.: On the stability of certain vortex motion. Proc. Soc. Lond., 18-42 (1983) · JFM 25.1467.02
[19] Marchioro, C., Pulvirenti, M.: Some considerations on the nonlinear stability of stationary planar Euler flows. Commun. Math Phys.100, 343-354 (1985) · Zbl 0625.76060 · doi:10.1007/BF01206135
[20] Marsden, J., Weinstein, A.: Co-adjoint orbits, vortices, and Clebsch variables for incompressible fluids. Physica7D, 305-323 (1983) · Zbl 0576.58008
[21] McKee, T. G.: Existence and structure on non-circular stationary vortices. Thesis, Brown University, 1981
[22] Meiron, D. I., Saffman, P. G., Schatzman, J. C.: The stability of inviscid vortex streets of finite cored vortices (preprint) C.I.T. 1983 · Zbl 0585.76046
[23] Norbury, J.: A family of steady rings. J. Fluid Mech.57, 417-431 (1973) · Zbl 0254.76018 · doi:10.1017/S0022112073001266
[24] Pierrehumbert, R. T.: A family of steady translating vortex pairs with distributed vorticity. J. Fluid Mech.99, 129-144 (1980) · Zbl 0473.76034 · doi:10.1017/S0022112080000559
[25] Saffman, P. G., Szeto, R.: Equilibrium shapes of a pair of equal uniform vortices.Phys. Fluids 23(12), - (1980)
[26] Tang, Y.: Nonlinear stability of vortex patches, Thesis, 1984, S.U.N.Y. at Buffalo
[27] Turkington, B.: Co-rotating steady vortex flows withN-fold symmetry. Nonlinear Anal. (to appear) 1984
[28] Turkington, B.: On steady vortex flows in two dimensions, I. Commun. Partial Differ. Equations, 999-1030 (1983) · Zbl 0523.76014
[29] Wan, Y.H.: Variational principles for Hill spherical vortex and nearly spherical vortices, preprint, S.U.N.Y. at Buffalo, 1985
[30] Wan, Y.H., Pulvirenti, M.: Nonlinear stability of circular vortex patches. Commun. Math. Phys.99, 435-450 (1985) · Zbl 0584.76062 · doi:10.1007/BF01240356
[31] Weinstein, A.: Stability of Poisson-Hamilton equilibria. Fluids and Plasmas, Contemporary Math. Vol.28, 1984 · Zbl 0549.58018
[32] Williamson, J.: On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math.58, 141-163 (1936) · Zbl 0013.28401 · doi:10.2307/2371062
[33] Wu, H., Overman, E., Zabusky, N.: Steady-state solutions of the Euler equations in two dimensions: Rotating and translatingV-states with limiting cases. I. Numerical Results. J. Comput. Phys. ,54 (1984) · Zbl 0524.76029
[34] Zubusky, N. J.: Recent developments in contour dynamics for the Euler equations. Ann. New York Acad. Sci.373, 160-170 (1981) · doi:10.1111/j.1749-6632.1981.tb51141.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.