×

Solving the \((3+1)\)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm. (English) Zbl 1280.35122

Summary: The multiple exp-function algorithm, as a generalization of Hirota’s perturbation scheme, is used to construct multiple wave solutions to the \((3+1)\)-dimensional generalized KP and BKP equations. The resulting solutions involve generic phase shifts and wave frequencies containing many existing choices. It is also pointed out that the presented phase shifts for the two considered equations are all not of Hirota type.

MSC:

35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)
68W30 Symbolic computation and algebraic computation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hirota, R., Direct methods in soliton theory, (), 157-176
[2] Hirota, R., The direct method in soliton theory, (2004), Cambridge University Press New York
[3] Hietarinta, J., Hirota’s bilinear method and soliton solutions, Phys. AUC, 15, Part 1, 31-37, (2005)
[4] Ma, W.X.; Huang, T.W.; Zhang, Y., A multiple exp-function method for nonlinear differential equations and its application, Phys. scri., 82, 065003, (2010), (8pp) · Zbl 1219.35209
[5] Darvishi1, M.T.; Najafi, M.; Najafi, M., Application of multiple exp-function method to obtain multi-soliton solutions of (2+1)- and (3+1)-dimensional breaking soliton equations, Am. J. comput. appl. math., 1, 41-47, (2011)
[6] Ma, W.X.; Fan, E.G., Linear superposition principle applying to Hirota bilinear equations, Comput. math. appl., 61, 950-959, (2011) · Zbl 1217.35164
[7] Ma, W.X.; Zhang, Y.; Tang, Y.N.; Tu, J.Y., Hirota bilinear equations with linear subspaces of solutions, Appl. math. comput., 218, 7174-7183, (2012) · Zbl 1245.35109
[8] Hirota, R.; Ito, M., Resonance of solitons in one dimension, J. phys. soc. jpn., 52, 744-748, (1983)
[9] Lan, H.B.; Wang, K.L., Exact solutions for two nonlinear equations I, J. phys. A math. gen., 23, 3923-3928, (1990) · Zbl 0718.35020
[10] Malfliet, W.; Hereman, W., The tanh method I: exact solutions of nonlinear evolution and wave equations, Phys. scri., 54, 563-568, (1996) · Zbl 0942.35034
[11] Ma, W.X.; Fuchssteiner, B., Explicit and exact solutions to a kolmogorov – petrovskii – piskunov equation, Int. J. non-linear mech., 31, 329-338, (1996) · Zbl 0863.35106
[12] Chen, H.T.; Yin, H.C., A note on the elliptic equation method, Commun. nonlinear sci. numer. simulat., 13, 547-553, (2008) · Zbl 1131.35069
[13] Zhang, H.Q., Various exact travelling wave solutions for Kundu equation with fifth-order nonlinear term, Rep. math. phys., 65, 231-239, (2010) · Zbl 1202.35055
[14] Yan, Z.Y., The new tri-function method to multiple exact solutions of nonlinear wave equations, Phys. scri., 78, 035001, (2008), (5pp) · Zbl 1155.35427
[15] Wang, M.L.; Li, X.Z.; Zhang, J.L., The \((\frac{G^\prime}{G})\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. lett. A, 372, 417-423, (2008)
[16] Zayed, E.M.E.; Gepreel, K.A., The \((G^\prime / G)\)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics, J. math. phys., 50, 013502, (2009), (12pp)
[17] Ma, W.X., Complexiton solutions to the Korteweg-de Vries equation, Phys. lett. A, 301, 35-44, (2002) · Zbl 0997.35066
[18] Ma, W.X.; Maruno, K., Complexiton solutions of the Toda lattice equation, Phys. A, 343, 219-237, (2004)
[19] Ma, W.X., Soliton, positon and negaton solutions to a Schrödinger self-consistent source equation, J. phys. soc. jpn., 72, 3017-3019, (2003) · Zbl 1133.81332
[20] Ma, W.X., Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources, Chaos solitons fract., 26, 1453-1458, (2005) · Zbl 1098.37064
[21] Ma, W.X.; You, Y., Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions, Trans. am. math. soc., 357, 1753-1778, (2005) · Zbl 1062.37077
[22] Ma, W.X.; Li, C.X.; He, J.S., A second Wronskian formulation of the Boussinesq equation, Nonlinear anal., 70, 4245-4258, (2009) · Zbl 1159.37425
[23] Li, C.X.; Ma, W.X.; Liu, X.J.; Zeng, Y.B., Wronskian solutions of the Boussinesq equation – solitons, negatons, positons and complexitons, Inverse probl., 23, 279-296, (2007) · Zbl 1111.35044
[24] Ma, W.X., An application of the Casoratian technique to the 2D Toda lattice equation, Mod. phys. lett. B, 22, 1815-1825, (2008) · Zbl 1153.82310
[25] Hirota, R., Soliton solutions to the BKP equations - I. the Pfaffian technique, J. phys. soc. jpn., 58, 2285-2296, (1989)
[26] Yu, G.F.; Hu, X.B., Extended Gram-type determinant solutions to the kadomtsev – petviashvili equation, Math. comput. simulat., 80, 184-191, (2009) · Zbl 1179.35279
[27] Kudryashov, N.A., Seven common errors in finding exact solutions of nonlinear differential equations, Commun. nonlinear sci. numer. simulat., 14, 3507-3529, (2009) · Zbl 1221.35342
[28] Ma, W.X., Comment on the 3+1 dimensional Kadomtsev-Petviashvili equations, Commun. nonlinear sci. numer. simulat., 16, 2663-2666, (2011) · Zbl 1221.35353
[29] He, J.H.; Wu, H.X., Exp-function method for nonlinear wave equations, Chaos solitons fract., 30, 700-708, (2006) · Zbl 1141.35448
[30] El-Wakil, S.A.; Madkour, M.A.; Abdou, M.A., Application of exp-function method for nonlinear evolution equations with variable coefficients, Phys. lett. A, 369, 62-69, (2007) · Zbl 1209.81097
[31] Khanib, F.; Hamedi-Nezhad, S.; Darvishi, M.T.; Ryua, S.-W., New solitary wave and periodic solutions of the foam drainage equation using the exp-function method, Nonlinear anal. real world appl., 10, 1904-1911, (2009) · Zbl 1168.35302
[32] Ma, W.X., Darboux transformations for a Lax integrable system in \(2 n\) dimensions, Lett. math. phys., 39, 33-49, (1997) · Zbl 0869.58029
[33] H.Q. Zhao, Z.N. Zhu, Darboux transformation and exact solutions for a three-field lattice equation, in: Nonlinear and Modern Mathematical Physics, AIP Conf. Proc. Vol. 1212, Am. Inst. Phys., Melville, NY, 2010, pp. 162-169. · Zbl 1214.81177
[34] Hereman, W.; Nuseir, A., Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. comput. simulat., 43, 13-27, (1997) · Zbl 0866.65063
[35] Wazwaz, A.M., N-soliton solutions for shallow water waves equations in (1+1) and (2+1) dimensions, Appl. math. comput., 217, 8840-8845, (2011) · Zbl 1333.35244
[36] Ma, W.X.; Pekcan, A., Uniqueness of the kadomtsev – petviashvili and Boussinesq equations, Z. naturforsch. A, 66, 282-377, (2011)
[37] Zhu, Z.N., Painlevé property, Bäcklund transformation, Lax pair and soliton-like solution for a variable coefficient KP equation, Phys. lett. A, 182, 277-281, (1993)
[38] You, F.C.; Xia, T.C.; Chen, D.Y., Decomposition of the generalized KP, ckp and mkp and their exact solutions, Phys. lett. A, 372, 3184-3194, (2008) · Zbl 1220.35136
[39] Wazwaz, A.M., Four (2+1)-dimensional integrable extensions of the kadomtsev – petviashvili equation, Appl. math. comput., 215, 3631-3644, (2010) · Zbl 1186.37083
[40] Hirota, R., A new form of Bäcklund transformations and its relation to the inverse scattering problem, Prog. theor. phys., 52, 1498-1512, (1974) · Zbl 1168.37322
[41] Gilson, C.; Lambert, F.; Nimmo, J.; Willox, R., On the combinatorics of the Hirota DD-operators, Proc. roy. soc. London ser. A, 452, 223-234, (1996) · Zbl 0868.35101
[42] Ma, W.X., A refined invariant subspace method and applications to evolution equations, Sci. China math., (2012) · Zbl 1263.37071
[43] Wazwaz, A.M., Multiple-soliton solutions for a \((3 + 1)\)-dimensional generalized KP equation, Commun. nonlinear sci. numer. simulat., 17, 491-495, (2012) · Zbl 1245.35104
[44] Ma, W.X.; Abdeljabbar, A.; Asaad, M.G., Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation, Appl. math. comput., 217, 10016-10023, (2001) · Zbl 1225.65098
[45] W.X. Ma, T.C. Xia, Pfaffianized systems for a generalized Kadomtsev-Petviashvili equation, Preprint, 2012. · Zbl 1277.35306
[46] Geng, X.G.; Ma, Y.L., N-soliton solution and its Wronskian form of a \((3 + 1)\)-dimensional nonlinear evolution equation, Phys. lett. A, 369, 285-289, (2007) · Zbl 1209.35116
[47] Ma, W.X.; Lee, J.-H., A transformed rational function method and exact solutions to the 3+1 dimensional jimbo – miwa equation, Chaos solitons fract., 42, 1356-1363, (2009) · Zbl 1198.35231
[48] Wu, J.P.; Geng, X.G., Grammian determinant solution and pfaffianization for a \((3 + 1)\)-dimensional soliton equation, Commun. theor. phys., 52, 791-794, (2009) · Zbl 1183.35237
[49] Hu, X.B.; Wang, H.Y., Construction of dkp and BKP equations with self-consistent sources, Inverse probl., 22, 1903-1920, (2006) · Zbl 1105.37043
[50] Ma, W.X., Generalized bilinear differential equations, World appl. sci. J., (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.