zbMATH — the first resource for mathematics

Commutation relations for creation-annihilation operators associated with the quantum nonlinear Schrödinger equation. (English) Zbl 0626.46065
The quantum nonlinear Schrödinger equation (NLS) \(\sqrt{-1}\psi_ t=- \psi_{xx}+2c\psi^+\psi^ 2\) is treated here. Let \(b^+(k),b(\ell)\) be the creation and annihilation operators for the Bethe ansatz eigenstates (BAE) of the Hamiltonian \(H=\int^{\infty}_{-\infty}dx[- \psi^+\psi_{xx}+c\psi^{+2}\psi^ 2]\) of NLS and let a(k), \(a^+(\ell)\) be their companions diagonalized by the BAE. The normalized quantum reflection coefficients \(R^+(k)=b^+(k)a^{-1}(k)\) and corresponding R(\(\ell)\) have been introduced and the commutation relation (CR) between them have been also derived by using quantum inverse scattering transform and the relation \(\int^{\infty}_{0}dxe^{ikx}=\delta (k)/2\) etc.
In this paper the author gives a rigorous mathematical derivation of the CR based on the intertwining operators and an approach to the quantum NLS as follows:
Let \(\psi^+(x,0)=\psi^+_ 0(x)\) and \(b_ 0^+(k)=\int^{\infty}_{-\infty}dxe^{\sqrt{-1}kx}\psi_ 0^+(x)\). Then operators \(b_ 0^+(x)\) create the normalized free eigenstates \(f_ 0(x_ 1,...,x_ N| k_ 1,..,k_ N)\equiv f_ 0(x| k)=(N!)^{-}\sum_{w}\exp (\sqrt{-1}<wk| x>)\) of \(H_ 0=- \int^{\infty}_{-\infty}dx\psi^+_ 0\psi_{0xx}\), where w is an element of the permutation group \(S_ N\). His intertwining operators \(P^*\), P are given as follows: \(P^{*-1}f_ 0(\cdot | k)=BAEf(\cdot | k)\) given by \(f(\cdot | k)|_{x_ 1\geq...\geq x_ N}=(N!)^{-}\sum_{w}w[\{\prod_{i<j}\{c+\sqrt{- 1}(k_ i-k_ j)\}/\sqrt{-1}(k_ i-k_ j)\}\exp (\sqrt{-1}<k| x>]\), and \(b^+(k)=P^{*-1}b^+_ 0(k)P^*\), where \(w\in S_ N\) operate to k. By the same way P and b(k) are given from \(\psi\) (x,0). \(a_ 0(k)\) is the operator \[ a_ 0(k)f_ 0(\cdot | k_ 1,...,k_ N)=[\prod^{N}_{i-1}\{c+\sqrt{-1}(k-k_ i)\}/\sqrt{-1}(k- k_ i)]f_ 0(\cdot | k_ 1,...,k_ N), \] and \(a^+_ 0(k)\) is in a similar way. Then a(k), \(a^+(k)\), A(k) and \(A^+(k)=Pa^+_ 0(k)[a^+_ 0(k)a_ 0(k)]^{-}P^{-1}\) are also derived using the operators P and \(P^*\), and the Theorems on CR between R(k) and \(R^+(\ell)\), and on scattering states by \(R^+(\ell)\) are proved. Finally similar arguments by using another intertwining operator \(Q=P^{*-1}(P^*P)^{1/2}\) are also proved.
Reviewer: H.Yamagata

46N99 Miscellaneous applications of functional analysis
81T08 Constructive quantum field theory
Full Text: DOI
[1] Sklyanin E. K., Dokl. Akad. Nauk. USSR 244 pp 107– (1979)
[2] DOI: 10.1103/PhysRevD.19.3660 · Zbl 1267.81289 · doi:10.1103/PhysRevD.19.3660
[3] DOI: 10.1007/BF01035568 · Zbl 0298.35016 · doi:10.1007/BF01035568
[4] DOI: 10.1088/0305-4470/14/10/018 · Zbl 0498.35032 · doi:10.1088/0305-4470/14/10/018
[5] DOI: 10.1088/0266-5611/2/2/007 · Zbl 0608.35073 · doi:10.1088/0266-5611/2/2/007
[6] DOI: 10.1103/RevModPhys.53.253 · doi:10.1103/RevModPhys.53.253
[7] DOI: 10.1215/S0012-7094-82-04901-8 · Zbl 0517.35026 · doi:10.1215/S0012-7094-82-04901-8
[8] Gutkin E., Ann. Inst. H. Poincaré 2 pp 67– (1985)
[9] Gutkin E., Ann. Inst. H. Poincaré 3 pp 285– (1986)
[10] DOI: 10.1007/BF01091462 · Zbl 0497.35072 · doi:10.1007/BF01091462
[11] Berezin F. A., Vestn. Mosk. Univ. 1 pp 21– (1964)
[12] DOI: 10.1063/1.526400 · doi:10.1063/1.526400
[13] DOI: 10.1016/0003-4916(79)90391-9 · doi:10.1016/0003-4916(79)90391-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.