×

zbMATH — the first resource for mathematics

Optimal linear estimation for systems with multiple packet dropouts. (English) Zbl 1283.93271
Summary: This paper is concerned with the optimal linear estimation problem for linear discrete-time stochastic systems with multiple packet dropouts. Based on a packet dropout model, the optimal linear estimators including filter, predictor and smoother are developed via an innovation analysis approach. The estimators are computed recursively in terms of the solution of a Riccati difference equation of dimension equal to the order of the system state plus that of the measurement output. The steady-state estimators are also investigated. A sufficient condition for the convergence of the optimal linear estimators is given. Simulation results show the effectiveness of the proposed optimal linear estimators.

MSC:
93E10 Estimation and detection in stochastic control theory
93C05 Linear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, B.D.O.; Moore, J.B., Optimal filtering, (1979), Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0758.93070
[2] Azimi-Sadjadi, B. (2004). Stability of networked control systems in the presence of packet losses. In Proceedings of the 43rd IEEE conference on decision and control (pp. 676-681)
[3] Gupta, V., Spanos, D., Hassibi, B., & Murray, R. M. (2006). Optimal LQG control across a packet-dropping links. System and Control Letters, (June) (in press) · Zbl 1137.90379
[4] Hadidi, M.; Schwartz, S., Linear recursive state estimators under uncertain observations, IEEE transactions on information theory, 24, 944-948, (1979) · Zbl 0416.93087
[5] Halevi, Y.; Ray, A., Integrated communication and control systems: part I-analysis, Journal of dynamic systems measurement and control, 110, 367-373, (1988)
[6] Kolmanovsky, I., & Maizenberg, T. L. (2000). Stochastic stability of a class of nonlinear systems with randomly varying time-delay. In Proceedings of the American control conference (pp. 4304-4308)
[7] Kolmanovskii, V.B.; Maizenberg, T.L.; Richard, J.P., Mean square stability of difference equations with a stochastic delay, Nonlinear analysis, 52, 795-804, (2003) · Zbl 1029.39005
[8] Koning, W.L.DE., Optimal estimation of linear discrete-time systems with stochastic parameters, Automatica, 20, 113-115, (1984) · Zbl 0542.93062
[9] Ling, Q., & Lemmon, M. (2003). Optimal dropout compensation in networked control systems. In Proceedings of the 42nd IEEE conference on decision and control (pp. 670-675)
[10] Matveev, A.S.; Savkin, A.V., The problem of state estimation via asynchronous communication channels with irregular transmission times, IEEE transactions on automatic control, 48, 670-676, (2003) · Zbl 1364.93779
[11] Matveev, A.S.; Savkin, A.V., Optimal computer control via communication channels with irregular transmission times, International journal of control, 76, 165-177, (2003) · Zbl 1025.93019
[12] Matveev, A.S.; Savkin, A.V., Optimal control via asynchronous communication channels, Journal of optimization theory and applications, 122, 539-572, (2004) · Zbl 1082.93059
[13] Nahi, N., Optimal recursive estimation with uncertain observation, IEEE transactions on information theory, 15, 457-462, (1969) · Zbl 0174.51102
[14] Nakamori, S.; Caballero-Aguila, R.; Hermoso-Carazo, A.; Linares-Perez, J., Linear recursive discrete-time estimators using covariance information under uncertain observations, Signal processing, 83, 1553-1559, (2003) · Zbl 1144.93375
[15] Nakamori, S.; Caballero-Aguila, R.; Hermoso-Carazo, A.; Linares-Perez, J., Recursive estimators of signals from measurements with stochastic delays using covariance information, Applied mathematics and computation, 162, 65-79, (2005) · Zbl 1062.94520
[16] Nilsson, J.; Bernhardsson, B.; Wittenmark, B., Stochastic analysis and control of real-time systems with random time delays, Automatica, 34, 57-64, (1998) · Zbl 0908.93073
[17] Ray, A.; Halevi, Y., Integrated communication and control systems: part II-design considerations, Journal of dynamic systems measurement and control, 110, 374-381, (1988)
[18] Ray, A.; Liou, L.W.; Shen, J.H., State estimation using randomly delayed measurements, Journal of dynamic systems measurement and control, 115, 19-26, (1993)
[19] Sahebsara, M.; Chen, T.; Shah, S.L., Optimal \(H_2\) filtering with random sensor delay, multiple packet dropout and uncertain observations, International journal of control, 80, 292-301, (2007) · Zbl 1140.93486
[20] Schenato, L. (2006). Optimal estimation in networked control systems subject to random delay and packet loss. In Proceedings of the 45nd IEEE conference on decision and control (pp. 5615-5620)
[21] Sinopoli, B.; Schenato, L.; Franceschetti, M.; Poolla, K.; Jordan, M.; Sastry, S., Kalman filtering with intermittent observations, IEEE transactions on automatic control, 49, 1453-1464, (2004) · Zbl 1365.93512
[22] Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., & Sastry, S. (2005). An LQG optimal linear controller for control systems with packet losses. In Proceedings of the 44nd IEEE conference on decision and control (pp. 458-463)
[23] Su, C.L.; Lu, C.N., Interconnected network state estimation using randomly delayed measurements, IEEE transactions on power systems, 16, 870-878, (2001)
[24] Wang, Z.; Ho, D.W.C.; Liu, X., Robust filtering under randomly varying sensor delay with variance constraints, IEEE transactions on circuits and systems-II: express briefs, 51, 320-326, (2004)
[25] Wang, Z.; Yang, F.; Ho, D.W.C.; Liu, X., Robust \(H\)-infinity filtering for stochastic time-delay systems with missing measurements, IEEE transactions on signal processing, 54, 2579-2587, (2006) · Zbl 1373.94729
[26] Yaz, E., & Ray, A. (1996). Linear unbiased state estimation for random models with sensor delay. In Proceedings of the 35th CDC (pp. 47-52). Vol. 1
[27] Yaz, E.; Ray, A., Linear unbiased state estimation under randomly varying bounded sensor delay, Applied mathematics letters, 11, 27-32, (1998) · Zbl 0944.93029
[28] Yaz, Y. I., Yaz, E. E., & Mohseni, M. J. (1998). LMI-based state estimation for some discrete-time stochastic models, In Proceedings of the 1998 IEEE international conference on control applications (pp. 456-460)
[29] Zhang, L.; Shi, Y.; Chen, T.; Huang, B., A new method for stabilization of networked control systems with random delays, IEEE transactions on automatic control, 50, 1177-1181, (2005) · Zbl 1365.93421
[30] Zhang, H.; Xie, L., Control and estimation of systems with input/output delays, (2007), Springer, p. 2007 · Zbl 1117.93003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.