zbMATH — the first resource for mathematics

Nonuniqueness of limit cycles of Gause-type predator-prey systems. (English) Zbl 0629.34036
By comparison with the Lotka-Volterra system, we obtain a theorem concerning the nonuniqueness of limit cycles of a Gause-type predator- prey system. The method we develop here can be generalized. Moreover, we disprove a conjecture posed by H. I. Freedman by constructing an example of a system with a strictly concave down prey isocline which has at least three limit cycles.

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
42A15 Trigonometric interpolation
Full Text: DOI
[1] DOI: 10.1016/0022-247X(74)90267-4 · Zbl 0281.92012 · doi:10.1016/0022-247X(74)90267-4
[2] DOI: 10.1126/science.181.4104.1073 · doi:10.1126/science.181.4104.1073
[3] DOI: 10.1137/0512047 · Zbl 0471.92021 · doi:10.1137/0512047
[4] DOI: 10.1007/BF00275207 · Zbl 0464.92021 · doi:10.1007/BF00275207
[5] Cherkas L.A., Differential Equations 6 pp 891– (1970)
[6] DOI: 10.1137/0146043 · Zbl 0608.92016 · doi:10.1137/0146043
[7] Freedman H.I., Deterministic Mathematical Models in Population Ecology (1980) · Zbl 0448.92023
[8] Freedman H.I., Bulletin Math. Bioi 48 pp 493– (1986)
[9] Hassard B.D., London Math. Soc, Lecture Note 41 (1981)
[10] DOI: 10.1016/0025-5564(78)90025-1 · Zbl 0383.92014 · doi:10.1016/0025-5564(78)90025-1
[11] Kuang Y., Math. Biosci 39 (1978)
[12] Liou L.P., On the uniqueness of a limit cycle for a predator-prey system · Zbl 0655.34022
[13] Marsden J.E., The Hopf Bifurcation and its Applications (1976)
[14] DOI: 10.1126/science.177.4052.900 · doi:10.1126/science.177.4052.900
[15] Waltman P., Competition Models in Population Biology (1983) · Zbl 0572.92019
[16] Wolkowicz G.S.K., Bifurcation analysis of a predator-prey system involving group defence · Zbl 0657.92015
[17] Ye Y.Q., Amer. Math. Soc (1986)
[18] DOI: 10.1080/00036818608839631 · Zbl 0595.34033 · doi:10.1080/00036818608839631
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.