Schochet, Steven Hyperbolic-hyperbolic singular limits. (English) Zbl 0629.35079 Commun. Partial Differ. Equations 12, 589-632 (1987). Roughly speaking, the limit \(\epsilon \to 0^+\) of the differential equation \(\epsilon M(u)+L(u)=0\) is called a singular limit if, M has a higher derivative in some variable than does L. Such a singular limit is said to be uniformly well-posed if the solution is bounded independently of \(\epsilon\) and converges as \(\epsilon\) tends to 0 to a solution of the reduced equation \(L(u)=0\). Singular limits of partial differential equations are categorized by the types of the full and reduced equations. For example, \(\epsilon (u_{tt}-c^ 2u_{xx})+Bu_ t+Du_ x-h=0\) is a hyperbolic-hyperbolic singular limit. In this paper the author shows that the conditions for the well-posedness of the hyperbolic-hyperbolic singular limit \(\epsilon A(u_{tt}-c^ 2\Delta u)+Bu_ t+D^ ju_{xj}-h=0,\) \(u(x,0)=f(x)\), \(\epsilon u_ t(0,x)=\epsilon g(x)\), where c is a scalar, u a vector, and A, B, and \(D^ j\) are matrices with A and B positive definite and B and \(D^ j\) symmetric, are \(B>0\) and \(| D| B^{-1}<| c|\). Further, the author explores the generalization of these conditions for systems of the form \[ \epsilon (Au_{tt}-Cu_{xx})+Bu_ t+Du_ x=0 \] where A, B, C, and D are constant symmetric matrices, and A, B, and C are positive definite. Reviewer: E.C.Young Cited in 5 Documents MSC: 35L45 Initial value problems for first-order hyperbolic systems 35L15 Initial value problems for second-order hyperbolic equations 35B25 Singular perturbations in context of PDEs 35L20 Initial-boundary value problems for second-order hyperbolic equations Keywords:singular limit; uniformly well-posed; reduced equation; hyperbolic- hyperbolic singular limit PDF BibTeX XML Cite \textit{S. Schochet}, Commun. Partial Differ. Equations 12, 589--632 (1987; Zbl 0629.35079) Full Text: DOI OpenURL References: [1] Cole J.D., Perturbation Methods in Applied Mathematics (1968) · Zbl 0162.12602 [2] DOI: 10.1007/BF01211598 · Zbl 0655.76041 [3] DOI: 10.1002/cpa.3160350402 · Zbl 0478.76011 [4] DOI: 10.1016/0022-247X(83)90211-1 · Zbl 0493.34005 [5] DOI: 10.1137/0516075 · Zbl 0577.34050 [6] Freidman A., Partial Differential Equations (1976) [7] Geel R., Singular Perturbations of Hyperbolic Type, Mathematical Centre Tracts #98 (1978) · Zbl 0498.35001 [8] Genet J., Lecture Notes in Match 594 pp 201– (1977) [9] DOI: 10.1137/0516090 · Zbl 0612.35007 [10] DOI: 10.1137/0514091 · Zbl 0534.35068 [11] De Jager E.M., Nieuw Arch. Wisk 25 pp 145– (1975) [12] DOI: 10.1007/978-1-4612-5700-4 [13] DOI: 10.1002/cpa.3160340405 · Zbl 0476.76068 [14] Kreiss H.–O., Math. Scand 7 pp 71– (1959) · Zbl 0090.09801 [15] DOI: 10.1002/cpa.3160330310 · Zbl 0439.35043 [16] Lions J. L., Lecture notes in Math 323 (1973) [17] DOI: 10.1007/978-1-4612-1116-7 [18] DOI: 10.1016/0022-0396(85)90107-X · Zbl 0512.76067 [19] DOI: 10.1007/BF01229377 · Zbl 0651.73004 [20] DOI: 10.1007/BF01210792 · Zbl 0612.76082 [21] Schochet S., to appear in Commun. PDE. [22] Schochet S., to appear in J. Diff. Eq. [23] DOI: 10.1007/BF01463396 · Zbl 0639.76054 [24] Teman R., Navier Stokes Equations (1977) [25] L. R. Volevich, Differenital Equations 19 pp 1516– (1983) [26] DOI: 10.1016/0022-0396(71)90003-9 [27] Fattorini H. O., preprint [28] DOI: 10.1002/cpa.3160350503 · Zbl 0478.76091 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.