×

A hybrid subgradient algorithm for nonexpansive mappings and equilibrium problems. (English) Zbl 1302.65152

Summary: We propose a strongly convergent algorithm for finding a common point in the solution set of a class of pseudomonotone equilibrium problems and the set of fixed points of nonexpansive mappings in a real Hilbert space. The proposed algorithm uses only one projection and does not require any Lipschitz condition for the bifunctions.

MSC:

65K10 Numerical optimization and variational techniques
65K15 Numerical methods for variational inequalities and related problems
90C25 Convex programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anh, P.N.: A hybrid extragradient method extended to fixed point problems and equilibrium problems. Optim. 1, 1–13 (2011)
[2] Anh, P.N.: A logarithmic quadratic regularization method for solving pseudo-monotone equilibrium problem. ACTA Math. Vietnamica 34, 183–200 (2009) · Zbl 1200.65044
[3] Anh, P.N., Kim, J.K.: Outer approximation algorithms for pseudomonotone equilibrium problems. Comput. Math. Appl. 61, 2588–2595 (2011) · Zbl 1221.90083
[4] Anh, P.N., Kim, J.K., Nam, J.M.: Strong convergence of an extragradient method for equilibrium problems and fixed point problems. Korean Math. Soc. 49, 187–200 (2012) · Zbl 1317.65146
[5] Anh, P.N., Son, D.X.: A new iterative scheme for pseudomonotone equilibrium problems and a finite family of pseudocontractions. Appl. Math. Info. 29, 1179–1191 (2011) · Zbl 1232.65079
[6] Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlin. Anal.TMA. 67, 2350–2360 (2007) · Zbl 1130.47045
[7] Auslender, A., Teboulle, M., Ben-Tiba, S.: A logaritmic quadratic proximal method for variational inequalities Comput. Optim. Appl. 12, 31–40 (1999) · Zbl 1039.90529
[8] Blum, E., Oettli, W.: From optimization and variational inequality to equilibrium problems. Math. Stud. 63, 127–149 (1994) · Zbl 0888.49007
[9] Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Math. Metody 12, 747–756 (1976) · Zbl 0342.90044
[10] Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003) · Zbl 1062.90002
[11] Fukushima, M.: A relaxed projecion method for variational inequalities. Math. Prog. 35, 58–70 (1986) · Zbl 0598.49024
[12] Iusem, A.N., Sosa, W.: Iterative algorithms for equilibrium problems. Optim. 52, 301–316 (2003) · Zbl 1176.90640
[13] MaigĂ©, P.-E.: Projected subgradient techniques and viscosity methods for optimization with variational inequality constraints. European Oper. Res. 205, 501–506 (2010) · Zbl 1188.49014
[14] Mann, W.R.: Mean value methods in iteration. Proc. Amer. Math. Soc. 4, 506–510 (1953) · Zbl 0050.11603
[15] Mastroeni, G.: Gap functions for equilibrium problems. Glob. Optim. 27, 411–426 (2003) · Zbl 1061.90112
[16] Muu, L.D.: Stability property of a class of variational inequalitites. Optim. 15, 347–351 (1984) · Zbl 0553.49007
[17] Muu, L.D., Oettli, W.: convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlin. Anal. TMA. 18, 1159–1166 (1992) · Zbl 0773.90092
[18] Nguyen, T.T.V., Strodiot, J.J., Nguyen, V.H.: The interior proximal extragradient method for solving equilibrium problems. Glob. Optim. 40, 175–192 (2009) · Zbl 1192.90212
[19] Santos, P., Scheimberg, S.: An inexact subgradient algorithm for equilibrium problems. Comput. Appl. Math. 30, 91–107 (2011) · Zbl 1242.90265
[20] Schu, J.: Weak and strong conergence to fixed points of asymptotically nonexpansive mappings. Bull. Australian Math. Soc. 43, 153–159 (1991) · Zbl 0709.47051
[21] Tada, A., Takahashi, W.: Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem. Optim. Theory Appl. 133, 359–370 (2007) · Zbl 1147.47052
[22] Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. Math. Anal. Appl. 331, 506–515 (2007) · Zbl 1122.47056
[23] Tran, Q.D., Muu, L.D., Nguyen, V.H.: Extragradient algorithms extended to equilibrium problems. Optim. 57, 749–776 (2008) · Zbl 1152.90564
[24] Vuong, P.T., Strodiot, J.J., Nguyen, V.H.: Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems. Optim. Theory Appl. 155, 605–627 (2012) · Zbl 1273.90207
[25] Xu, H.K.: Viscosity approximation methods for nonexpansive mappings. Math. Anal. Appl. 298, 279–291 (2004) · Zbl 1061.47060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.