Taming wild extensions with Hopf algebras. (English) Zbl 0632.12013

At the beginning of this paper is Noether’s theorem: For a Galois extension \(L\supset K\) with Galois group G and rings of integers \(S\supset R\), respectively, S is locally RG-isomorphic to RG iff L/K is tamely ramified. The local isomorphisms between RG and S mean the existence of a normal basis in S. Since these isomorphisms fail in the non-tame case one has tried to replace RG by another order \({\mathfrak A}\) in KG. Generalizations of Noether’s theorem have been found for \(K={\mathbb{Q}}\), the rational numbers. But for general number fields even this approach failed.
The author now investigates those orders \({\mathfrak A}\) of S in KG which are R-Hopf algebras with the structure induced by KG. He shows that for an abelian extension \(L\supset K\) of number fields with group G and rings of integers \(R\subset S\) and \({\mathfrak A}\), the order of S in KG, a Hopf algebra, S is locally \({\mathfrak A}\)-isomorphic to \({\mathfrak A}\) and S a tame \({\mathfrak A}\)-extension of R. So the Hopf algebra property of \({\mathfrak A}\) is most important, but more: a wild RG-extension S becomes a tame \({\mathfrak A}\)-extension (with suitable definition of tameness). The author then investigates conditions for cyclotomic extensions of \({\mathbb{Q}}\) and Kummer extensions L/K of prime order, such that \({\mathfrak A}\) is a Hopf algebra. For this purpose he makes intensive use of the Tate-Oort classification of group schemes of order p over rings of integers.
Reviewer: B.Pareigis


11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
13B05 Galois theory and commutative ring extensions
11R18 Cyclotomic extensions
11S15 Ramification and extension theory
14E22 Ramification problems in algebraic geometry
14L15 Group schemes
Full Text: DOI


[1] Anne-Marie Bergé, Arithmétique d’une extension galoisienne à groupe d’inertie cyclique, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 4, 17 – 44, ix (French, with English summary). · Zbl 0377.12009
[2] Françoise Bertrandias, Décomposition du Galois-module des entiers d’une extension cyclique de degré premier d’un corps de nombres ou d’un corps local, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 1, xiv, 33 – 48 (French, with English summary). · Zbl 0386.13006
[3] Françoise Bertrandias and Marie-Josée Ferton, Sur l’anneau des entiers d’une extension cyclique de degré premier d’un corps local, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1330 – A1333 (French). · Zbl 0235.12007
[4] F. Bertrandias, J.-P. Bertrandias and M. J. Ferton, Sur l’anneau des entiers d’une extension cyclique de degre premier d’un corps local, C. R. Acad. Sci. Paris A 274 (1972), 1388-1391. · Zbl 0235.12008
[5] N. Bourbaki, Algèbre commutative, Chapitre II, Hermann, Paris, 1961. · Zbl 0108.04002
[6] S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965), 15 – 33. · Zbl 0143.05902
[7] Stephen U. Chase and Moss E. Sweedler, Hopf algebras and Galois theory, Lecture Notes in Mathematics, Vol. 97, Springer-Verlag, Berlin-New York, 1969. · Zbl 0197.01403
[8] Lindsay N. Childs, Representing classes in the Brauer group of quadratic number rings as smash products, Pacific J. Math. 129 (1987), no. 2, 243 – 255. · Zbl 0598.16006
[9] Lindsay N. Childs and Susan Hurley, Tameness and local normal bases for objects of finite Hopf algebras, Trans. Amer. Math. Soc. 298 (1986), no. 2, 763 – 778. · Zbl 0609.16005
[10] Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. · Zbl 0215.36602
[11] A. Fröhlich, Local fields, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965) Thompson, Washington, D.C., 1967, pp. 1 – 41.
[12] A. Fröhlich, The module structure of Kummer extensions over Dedekind domains, J. Reine Angew. Math. 209 (1962), 39 – 53. · Zbl 0105.02901
[13] S. Hurley, Tame and Galois Hopf algebras with normal bases, Thesis, SUNY at Albany, 1984.
[14] Susan Hurley, Galois objects with normal bases for free Hopf algebras of prime degree, J. Algebra 109 (1987), no. 2, 292 – 318. · Zbl 0622.16005
[15] H. Jacobinski, Über die Hauptordnung eines Körpers als Gruppenmodul, J. Reine Angew. Math. 213 (1963/1964), 151 – 164 (German). · Zbl 0124.02303
[16] Richard Gustavus Larson and Moss Eisenberg Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75 – 94. · Zbl 0179.05803
[17] Heinrich-Wolfgang Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119 – 149 (German). · Zbl 0098.03403
[18] T. Ligon, Galois-Theorie in monoidalen Kategorien, Algebra Ber. 35 (1978). · Zbl 0412.18010
[19] Bodo Pareigis, When Hopf algebras are Frobenius algebras, J. Algebra 18 (1971), 588 – 596. · Zbl 0225.16008
[20] Paulo Ribenboim, Algebraic numbers, Wiley-Interscience [A Division of John Wiley & Sons, Inc.], New York-London-Sydney, 1972. Pure and Applied Mathematics, Vol. 27. · Zbl 0247.12002
[21] Jean-Pierre Serre, Corps locaux, Hermann, Paris, 1968 (French). Deuxième édition; Publications de l’Université de Nancago, No. VIII. · Zbl 1095.11504
[22] Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. · Zbl 0194.32901
[23] John Tate and Frans Oort, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 3 (1970), 1 – 21. · Zbl 0195.50801
[24] M. J. Taylor, Relative Galois module structure of rings of integers and elliptic functions. II, Ann. of Math. (2) 121 (1985), no. 3, 519 – 535. , https://doi.org/10.2307/1971208 M. J. Taylor, Relative Galois module structure of rings of integers and elliptic functions. III, Proc. London Math. Soc. (3) 51 (1985), no. 3, 415 – 431. · Zbl 0594.12009
[25] Hideo Wada, On cubic Galois extensions of \?(\sqrt -3), Proc. Japan Acad. 46 (1970), 397 – 400. · Zbl 0209.35605
[26] Lindsay N. Childs and Andy R. Magid, The Picard invariant of a principal homogeneous space, J. Pure Appl. Algebra 4 (1974), 273 – 286. · Zbl 0282.14015
[27] Cornelius Greither and Bodo Pareigis, Hopf Galois theory for separable field extensions, J. Algebra 106 (1987), no. 1, 239 – 258. · Zbl 0615.12026
[28] M. J. Taylor, Hopf structure and the Kummer theory of formal groups, J. Reine Angew. Math. 375/376 (1987), 1 – 11. · Zbl 0609.12015
[29] George M. Bergman, Everybody knows what a Hopf algebra is, Group actions on rings (Brunswick, Maine, 1984) Contemp. Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 25 – 48. · Zbl 0569.16005
[30] Richard G. Larson, Group rings over Dedekind domains, J. Algebra 5 (1967), 358 – 361. · Zbl 0155.36205
[31] Lindsay N. Childs, Azumaya algebras which are not smash products, Rocky Mountain J. Math. 20 (1990), no. 1, 75 – 89. · Zbl 0705.16009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.