# zbMATH — the first resource for mathematics

On subgroups of $$GL_ n(F_ p)$$. (English) Zbl 0632.20030
Let G be subgroup of $$GL_ n({\mathbb{F}}_ q)$$ where $${\mathbb{F}}_ p$$ is the prime field of p elements, $$X=\{x\in G|$$ $$x^ p=1\}$$. Denote by $$G^+$$ the normal subgroup of G generated by X and denote by $$\tilde G$$ the algebraic subgroup of $$GL_ n$$ generated by the one-parameter subgroups $$t\mapsto x^ t=\exp (t \log x)$$ for all $$x\in X$$. The main result (Theorem B) says that $$G^+=\tilde G({\mathbb{F}}_ p)^+$$ for all primes $$p>c(n)$$. If G is semisimple and simply connected, then $$G^+\cong \tilde G({\mathbb{F}}_ p)$$. An algebraic subgroup $$\tilde G$$ of $$(GL_ n)_{{\mathbb{F}}_ q}$$ is said to be exponentially generated if $$\tilde G$$ is generated by a finite number of one-parameter subgroups exp(ty) where $$y\in M_ n({\mathbb{F}}_ p)$$ satisfies $$y^ p=0$$. Similarly a Lie subalgebra of $$M_ n({\mathbb{F}}_ p)$$ is called nilpotently generated if it is linearly spanned by its nilpotent elements. Theorem A asserts that nilpotently generated Lie subalgebras of $$M_ n({\mathbb{F}})$$ are in one-to-one correspondence with exponentially generated algebraic subgroups of $$(GL_ n)_ F$$ p is sufficiently large. In view of Theorem B, for $$F={\mathbb{F}}_ p$$, they are also in one-to-one correspondence with subgroups G of $$GL_ n({\mathbb{F}}_ p)$$ satisfying $$G=G^+.$$
Let G be a subgroup of GL(V) where V is a vector space of dimension n over $${\mathbb{F}}_ p$$ and let $$<\log G>\subset End V$$ be the linear span of $$\{$$ log $$x|$$ $$x\in X\}$$. The author shows that $$H^ 1(G^+,V)\cong H^ 1(<\log G>,V)$$ if $$p>c_ 2(n)$$ and that $$H^ 1(G,V)=0$$ if $$p>c_ 3(n)$$ and if the action of G on V is semisimple. As an application, the author shows that for a subgroup $$\pi \subset GL_ n({\mathbb{Z}})$$, the two measures of the size of $$\pi$$, i.e. the closure of $$\pi$$ in the profinite group $$GL_ n({\hat {\mathbb{Z}}})$$ and the Zariski-closure of $$\pi$$, are roughly equivalent.
Reviewer: Chen Zhijie

##### MSC:
 20G40 Linear algebraic groups over finite fields 20G10 Cohomology theory for linear algebraic groups 20E07 Subgroup theorems; subgroup growth 20H30 Other matrix groups over finite fields 20F40 Associated Lie structures for groups
Full Text:
##### References:
  Borel, A.: Linear algebraic groups. New York: Benjamin 1969 · Zbl 0206.49801  Cartan, H., Eilenberg, S.: Homological algebra. Princeton Math. Ser. No. 19, 1956 · Zbl 0075.24305  Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math.73, 349-366 (1983) · Zbl 0588.14026  Grothendieck, A.: EGA IV troisième partie. Publ. Math., Inst. Hautes Etud. Sci.28 (1966) · Zbl 0144.19904  Iwasawa, K.: Lectures onp-adicL-functions. Ann. Math. Stud. vol. 74. Princeton Univ. Press 1972  Lang, S.: Algebraic groups over finite fields. Am. J. Math.78, 555-563 (1956) · Zbl 0073.37901  Matthews, C.R., Vaserstein, L.N., Weisfeiler, B.: Congruence properties for Zariski-dense subgroups. Proc. London Math. Soc.48, 514-532 (1984) · Zbl 0551.20029  Nori, M.V.: On subgroups ofSL n (?) and $$SL_n (\mathbb{F}_p )$$ . Preprint 1983  Raghunathan, M.S.: Discrete subgroups of Lie groups. Ergebn. Math., vol. 68. Berlin-Heidelberg-New York: Springer 1972 · Zbl 0254.22005  Ribet, K.: Kummer theory on extensions of abelian varieties by tori. Duke Math. J.46, 743-761 (1979) · Zbl 0428.14018  Serre, J-P.: Représentationsl-adiques. Kyoto Internat. Symp. on Algebraic Number Theory, 1977, pp. 177-193  Serre, J-P.: Lie algebras and Lie groups. New York: Benjamin 1965 · Zbl 0132.27803  Serre, J-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math.15, 259-331 (1972) · Zbl 0235.14012  Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Am. Math. Soc.80 (1968) · Zbl 0164.02902  Weisfeiler, B.: Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups. Ann. Math.120, 271-315 (1984) · Zbl 0568.14025  Schmidt, W.M.: Equations over finite fields. An elementary approach. (Lecture Notes in Math., vol. 536). Berlin-Heidelberg-New York: Springer 1976 · Zbl 0329.12001  SGA 1: Lect. Notes in Math., vol. 224. Berlin-Heidelberg-New York: Springer 1971  Hall, M., Jr.: The theory of groups. New York: Macmillan 1959
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.