×

zbMATH — the first resource for mathematics

Homogeneous domains on flag manifolds. (English) Zbl 0632.53047
The paper is concerned with the study of the following problem: for a parabolic subgroup P of a (complex or real) semisimple Lie group L find all subgroups \(G\subset L\) which act locally transitively on the flag manifold L/P and find all open orbits of these subgroups on L/P. The author solves this problem in the following cases: L is a real simple Lie group of real rank 1; L is a complex simple Lie group, P its maximal parabolic subgroup; L is a real pseudoorthogonal group, L/P the corresponding quadric, G reductive. A characterization of locally transitive subgroups \(G\subset L\) in terms of representation theory is established. The paper also contains a survey of related results and applications.
Reviewer: A.L.Onishchik

MSC:
53C30 Differential geometry of homogeneous manifolds
22E46 Semisimple Lie groups and their representations
PDF BibTeX Cite
Full Text: DOI
References:
[1] Alexandrow, A.D, Uber eine verallgemeinerung der riemannschen geometrie, Schriftenreihe forschungsinstituts math. deuts. akad. wissenschaften Berlin, 1, 33-84, (1957) · Zbl 0077.35702
[2] Alekseevskii, D.V; Alekseevskii, D.V, Groups of conformal transformations of Riemannian spaces, Math. USSR-sb., Mat. sb., 89, No. 2, 280-296, (1972) · Zbl 0263.53029
[3] Alekseevskii, D.V; Kimelfeld, B.N; Alekseevskii, D.V; Kimelfeld, B.N, Classification of homgeneous conformally flat Riemannian manifolds, Math. notes, Mat. zametki, 24, No. 1, 103-110, (1978)
[4] Aomoto, K, On some double coset decompositions of complex semisimple Lie groups, J. math. soc. Japan, 18, No. 1, 1-44, (1966) · Zbl 0142.26701
[5] Astrahancev, V.V; Astrahancev, V.V, Pseudo-Riemannian symmetric spaces with a commutative holonomy group, Math. USSR-sb., Mat. sb., 90, No. 2, 288-305, (1973) · Zbl 0251.53041
[6] Bishop, R.L; O’Neil, B, Manifolds of negative curvature, Trans. amer. math. soc., 145, 1-49, (1969) · Zbl 0191.52002
[7] Borel, A; Harish-Chandra, Arithmetic subgroups of algebraic groups, Bull. amer. math. soc., 67, 579-583, (1961) · Zbl 0119.37001
[8] Borel, A; Tits, J, Groupes reductifs, Inst. hautes études sci. publ. math., 27, 55-150, (1965) · Zbl 0145.17402
[9] Bourbaki, N, Lie groups and Lie algebras, (1975), Addison-Wesley Reading, Mass · Zbl 0329.17002
[10] Cartan, E; Cartan, E, LES groupes projectifs continus reels qui ne laissent invariante aucune multiplicite plane, (), 10, 493-530, (1914) · JFM 45.0247.01
[11] Cartan, E; Cartan, E, Sur la détermination d’un système orthogonal complet dans un espace de Riemann symétrique clos, (), 53, 1045-1080, (1929) · JFM 55.1029.01
[12] Van Cha (Wang Ch’a Tao), Dao, On the induced representation and extensions of transitive transformation groups on compact homogeneous spaces, ()
[13] Dieudonné, J, La géométrie des groupes classiques, (1963), Springer-Verlag Berlin · Zbl 0111.03102
[14] Mumford, D; Fogarty, J, Geometric invariant theory, (1982), Springer-Verlag New York · Zbl 0504.14008
[15] Dold, A, Lectures on algebraic topology, (1980), Springer-Verlag New York, 2nd · Zbl 0234.55001
[16] Elashvili, A.G; Elashvili, A.G, Canonical form and stationary subalgebras of points in general position for simple linear Lie groups, Functional anal. appl., Funktsional. anal. i prilozhen., 6, No. 1, 65-78, (1972) · Zbl 0252.22015
[17] Elashvili, A.G; Elashvili, A.G, Stationary subalgebras of points in general position for irreducible linear Lie groups, Functional anal. appl., Funktsional anal. i prilozhen., 6, No. 2, 65-78, (1972) · Zbl 0252.22015
[18] Gurevich, G.B, Canonization of a pair of bivectors, (), 355-363, [in Russian] · Zbl 0041.48406
[19] Haris, S.J, Some irreducible representations of exceptional algebraic groups, Amer. J. math., 93, No.1, 75-106, (1971) · Zbl 0215.39603
[20] Helgason, S, Differential geometry and symmetric spaces, (1962), Academic Press New York · Zbl 0122.39901
[21] Igusa, J.-I, A classification of spinors up to dimension twelve, Amer. J. math., 92, No.4, 997-1028, (1970) · Zbl 0217.36203
[22] Iwahori, N, On real irreducible representations of Lie algebras, Nagoya math. J., 14, 59-83, (1959) · Zbl 0101.02401
[23] Jacobson, N, A note on automorphisms of Lie algebras, Pacific J. math., 12, No. 1, 303-315, (1962) · Zbl 0109.26201
[24] Kantor, I.L, The cross-ratio of four points and other invariants on homogeneous spaces with parabolic stationary subgroups, (), 250-313, [in Russian] · Zbl 0307.53029
[25] Kantor, I.L, Transitive differential groups and invariant connections on homogeneous spaces, (), 310-398, [in Russian] · Zbl 0162.53804
[26] Kantor, I.L; Sirota, A.I; Solodovnikov, A.S; Kantor, I.L; Sirota, A.I; Solodovnikov, A.S, A class of symmetric spaces with extendable group of motions and a generalization of the Poincaré model, Soviet math. dokl., Dokl. akad. nauk SSSR, 173, No. 3, 511-514, (1967) · Zbl 0165.55505
[27] Karpelevich, F.I; Karpelevich, F.I, The geometry of geodesics and the eigenfunctions of the Beltrami-Laplace operator on symmetric spaces, (), 14, 48-185, (1965) · Zbl 0156.42002
[28] Karpelevich, F.I, The simple subalgebras of the real Lie algebras, (), 3-112 · Zbl 0068.26203
[29] Karpelevich, F.I, Surfaces of transitivity of a semisimple subgroup of the group of motions of a symmetric space, Dokl. akad. nauk SSSR, 93, No. 3, 401-404, (1953), [in Russian] · Zbl 0052.38901
[30] Kimelfeld, B.N; Kimelfeld, B.N, Homogeneous domains on flag manifolds of rank 1, Soviet math. dokl., Dokl. akad. nauk SSSR, 229, No. 1, 23-26, (1976) · Zbl 0514.51024
[31] Kimelfeld, B.N; Kimelfeld, B.N, Homogeneous domains on the conformal sphere, Math. notes, Mat. zametki, 8, No. 3, 321-328, (1970) · Zbl 0514.51024
[32] Kimelfeld, B.N, Open orbits of reductive groups on a complex quadric, Soobshch. akad. nauk gruzin. SSR, 81, No. 2, 305-308, (1976), [in Russian]
[33] Kimelfeld, B.N; Kimelfeld, B.N, Quasihomogeneous domains on a conformal sphere, Russian math. surveys, Uspekhi mat. nauk, 33, No. 2, 193-194, (1978) · Zbl 0514.51024
[34] Kimelfeld, B.N; Kimelfeld, B.N, Reductive groups locally transitive on quadrics, Selecta math. soviet, Voprosy teor. grupp i gomol. alg. yaroslavl univ., 1, No. 2, 94-124, (1977) · Zbl 0517.22009
[35] Kirillov, A.A, Elements of representation theory, (1972), Nauka Moscow, [in Russian] · Zbl 0249.22012
[36] Kostant, B; Rallis, S, Orbits and representations associated with symmetric spaces, Amer. J. math., 93, No. 3, 753-809, (1971) · Zbl 0224.22013
[37] Kramer, M, Multiplicity free subgroups of compact connected Lie groups, Arch. math., 27, No. 1, 28-36, (1976) · Zbl 0322.22011
[38] Loos, O, ()
[39] Makarevich, B.O; Makarevich, B.O, Open symmetric orbits of reductive groups in symmetric R-spaces, Math. USSR-sb., Mat. sb., 91, No. 3, 390-401, (1973) · Zbl 0279.53047
[40] Malyshev, F.M; Malyshev, F.M, Local decompositions of the pseudo-orthogonal group, Math. notes, Mat. zametki, 16, No. 4, 633-643, (1974)
[41] Mostow, G.D, Fully reducible subgroups of algebraic groups, Amer. J. math., 78, No. 1, 200-221, (1956) · Zbl 0073.01603
[42] Nagano, T, Transformation groups on compact symmetric spaces, Trans. amer. math. soc., 118, No. 6, 428-453, (1965) · Zbl 0151.28801
[43] Onishchik, A.L; Onishchik, A.L, Decompositions of reductive Lie groups, Math. USSR-sb., Mat. sb., 80 (122), No. 4 (12), 553-599, (1969) · Zbl 0222.22011
[44] Onishchik, A.L, Inclusion relations among transitive compact transformation groups, (), 199-242, [in Russian] · Zbl 0192.12601
[45] Onishchik, A.L; Onishchik, A.L, On extensions of transitive groups of transformations, Soviet math. (iz. vuz), Izv. vyssh. uchebn. zaved. mat., 1, No. 3, 53-65, (1977) · Zbl 0968.32500
[46] Popov, V.L; Popov, V.L, Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional vector bundles, Math. USSR-izv., Izv. akad. nauk SSSR ser. mat., 38, No. 2, 294-322, (1974) · Zbl 0298.14023
[47] Rivilis, A.A; Rivilis, A.A, Homogeneous locally symmetric regions in homogeneous spaces associated with semisimple Jordan algebras, Math. USSR-sb., Mat. sb., 82, No. 3, 409-422, (1970) · Zbl 0205.26005
[48] Rivilis, A.A; Rivilis, A.A, Homogeneous locally symmetric regions in the conformal space, Soviet math. dokl., Dokl. akad. nauk SSSR, 184, No. 1, 558-561, (1969) · Zbl 0188.25802
[49] Rosenlicht, M, Some basic theorems on algebraic groups, Amer. J. math., 78, No. 2, 401-443, (1956) · Zbl 0073.37601
[50] Rosenlicht, M, Some rationality questions on algebraic groups, Ann. mat. pura appl. (4), 43, 25-50, (1957) · Zbl 0079.25703
[51] Sato, M; Kimura, T, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya math. J., 65, 1-155, (1977) · Zbl 0321.14030
[52] Servedio, F.J, Prehomogeneous vector spaces and varieties, Trans. amer. math. soc., 176, 421-444, (1973) · Zbl 0266.20043
[53] Tits, J, Tabellen zu den einfachen Lie gruppen und ihren darstellungen, (1967), Springer-Verlag Berlin · Zbl 0166.29703
[54] Vinberg, E.B; Vinberg, E.B, Discrete linear groups generated by reflections, Math. USSR-izv., Izv. akad. nauk USSR ser. mat., 35, No. 5, 1072-1112, (1971) · Zbl 0256.20067
[55] Vinberg, E.B, Invariant linear connections in a homogeneous space, (), 192-210, [in Russian]
[56] Vinberg, E.B; Vinberg, E.B, Properties of the root decomposition of a semisimple Lie algebra over an algebraically nonclosed [sic] field, Functional anal. appl., Funktsional. anal. i prilozhen., 9, No. 1, 20-24, (1975) · Zbl 0324.17003
[57] Vinberg, E.B; Vinberg, E.B, The structure of the automorphism group of a homogeneous convex cone, (), 13, 56-83, (1965) · Zbl 0171.29401
[58] Vinberg, E.B; Vinberg, E.B, The morozov-Borel theorem for real Lie groups, Soviet math. dokl., Dokl. akad. nauk SSSR, 141, No. 2, 270-273, (1961) · Zbl 0112.02505
[59] Vinberg, E.B; Vinberg, E.B, The theory of convex homogeneous cones, (), 12, 303-358, (1963) · Zbl 0138.43301
[60] Vinberg, E.B; Gindikin, S.G; Pjateckii-Sapiro, I.I; Vinberg, E.B; Gindikin, S.G; Pjateckii-Sapiro, I.I, Classification and canonical realization of complex bounded homogeneous domains, (), 12, 359-388, (1963)
[61] Vinberg, E.B; Kimelfeld, B.N; Vinberg, E.B; Kimelfeld, B.N, Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups, Functional anal. appl., Funktsional. anal. i prilozhen., 12, No. 3, 12-19, (1978)
[62] Vinberg, E.B; Onishchik, A.L, (), [in Russian]
[63] Vinberg, E.B; Kac, V.G; Vinberg, E.B; Kac, V.G, Quasi-homogeneous cones, Mat. zametki, Math. notes, 1, 347-354, (1967) · Zbl 0163.16902
[64] Vust, T, Operation des groupes reductifs dans un type de cones presque homogenes, Bull. soc. math. France, 102, No. 3, 317-333, (1974) · Zbl 0332.22018
[65] Wolf, J.A, The action of a real semisimple group on a complex flag manifold. I. orbit structure and holomorphic arc components, Bull. amer. math. soc., 75, No. 6, 1121-1237, (1969) · Zbl 0183.50901
[66] Wolf, J.A, Elliptic spaces in Grassmann manifolds, Illinois J. math., 73, 447-462, (1963) · Zbl 0114.37101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.