×

Symbolic dynamics and nonlinear semiflows. (English) Zbl 0632.58027

The authors generalize results of Smale and of Shil’nikov about diffeomorphisms of manifolds to results about semiflows in Banach spaces. Smale showed that if q is a transverse homoclinic point then for some power of the map there is a “horseshoe” near the homoclinic point. This means that on this set the map is equivalent to a full 2 sided shift on two symbols. The authors generalize the necessary definitions and prove analogous results for semiflows on Banach spaces. They then discuss some of the consequences.
Reviewer: B.Kitchens

MSC:

37D99 Dynamical systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Block, L., Homoclinic points of mapping on the interval, Proc. Amer. Math. Soc., 72, 576-580 (1978) · Zbl 0365.58015
[2] Guckenheimer, J.; Moser, J.; Newhouse, S. E., Dynamical Systems, C.I.M.E. Lectures (1978), Bressanone, Italy: Birkhäuser, Bressanone, Italy
[3] J.Hale,Theory of functional differential equations, Springer-Verlag, 1977. · Zbl 0352.34001
[4] D.Henry,Geometric theory of semilinear parabolic equations, Lecture Notes in Math., Vol.840, Springer-Verlag, 1981. · Zbl 0456.35001
[5] M. W.Hirsch - C. C.Pugh - M.Shub,Invariant manifolds, Lecture Notes in Math. Vol.583, Springer-Verlag, 1977. · Zbl 0355.58009
[6] Holmes, P.; Marsden, J., A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam, Archive Rational Mech. Anal., 76, 135-166 (1981) · Zbl 0507.58031
[7] Irwin, M. C., On the stable manifold theorem, Bull. London Math. Soc., 2, 196-198 (1970) · Zbl 0198.56802
[8] Irwin, M. C., On the smoothness of the composition map, Quart. J. Math. Oxford, (2), 23, 113-133 (1972) · Zbl 0235.46067
[9] Li, T.-Y.; Yorke, J. A., Period three implies chaos, Amer. Math. Monthly, 82, 985-9992 (1975) · Zbl 0351.92021
[10] Marotto, F. R., Snap-back repeller imply chaos in R^n, J. Math. Anal. and Appl., 63, 199-223 (1978) · Zbl 0381.58004
[11] Moser, J., Stable and random motion in dynamical systems (1973), Princeton, N. J.: Princeton University Press, Princeton, N. J.
[12] J.Palis - W.de Melo,Geometric theory of dynamical systems, Springer-Verlag, 1982. · Zbl 0491.58001
[13] K. J.Palmer,Exponential dichotomies and transversal homoclinic points, J. Diff. Equations, to appear. · Zbl 0508.58035
[14] Šil’Nikov, L. P., On a Poincaré-Birkhoff problem, Math. USSR-Sbornik, 3, no. 3, 353-371 (1967)
[15] Smale, S., Diffeomorphisms with many periodic points, Differential and Combinatorial Topology, 63-80 (1965), Princeton, N. J.: Princeton Univ. Press, Princeton, N. J. · Zbl 0142.41103
[16] Smale, S., Differentiable dynamical systems, Bull. Amer. Math. Soc., 73, 747-817 (1967) · Zbl 0202.55202
[17] Walther, H.-O., Homoclinic solution and chaos in x(t)=f(x(t−k)), J. Nonlinear Analysis, 5, 775-788 (1981) · Zbl 0459.34040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.