×

zbMATH — the first resource for mathematics

On partial regularity results for the Navier-Stokes equations. (English) Zbl 0632.76034
Looking at the regularity results of Scheffer, resp. Caffarelli, Kohn and Nirenberg from a new point of view indicates that estimates for the pressure do not play an essential role in partial regularity results for the Navier-Stokes equations.

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, Comm. Pure Appl. Math. 17 pp 35– (1964)
[2] Caffarelli, Comm. Pure. Appl. Math. 35 pp 771– (1985)
[3] Fabes, Arch. Rat. Mech. Anal. 45 pp 222– (1972)
[4] Gerhardt, Math. Z. 165 pp 193– (1979)
[5] Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983.
[6] Giaquinta, J. Reine Angew. Math. 330 pp 173– (1982)
[7] Hopf, Math. Nachr. 4 pp 213– (1951) · Zbl 0042.10604 · doi:10.1002/mana.3210040121
[8] The Mathematical Theory of Viscous Incompressible Flow, 2nd ed., Gordon and Breach, New York-London-Paris, 1969. · Zbl 0184.52603
[9] Leray, Acta. Math. 63 pp 193– (1934)
[10] and , Non-homogeneous Boundary Value Problems and Applications I/II, Springer Grundlehren 181/182, Berlin-Heidelberg-New York, 1972.
[11] Multiple Integrals in the Calculus of Variations, Springer Grundlehren 130, Berlin-Heidelberg-New York, 1966. · Zbl 0142.38701
[12] Okyama, Proc. Japan Acad. 36 pp 273– (1960)
[13] Scheffer, Pacific J. Math. 66 pp 535– (1976) · Zbl 0325.35064 · doi:10.2140/pjm.1976.66.535
[14] Scheffer, Comm. Math. Phys. 101 pp 47– (1985)
[15] Serrin, Arch. Rat. Mech. Anal. 9 pp 187– (1962)
[16] Sohr, Arch. Math. 46 pp 428– (1986)
[17] Solonnikov, AMS Transl. Ser. 2 75 pp 1– (1968)
[18] Solonnikov, AMS Transl. Ser. 2 56 pp 193– (1966)
[19] Interpolation Theory, Function Spaces, Differential Operators, North Holland Math. Lib. 18, Amsterdam-New York-Oxford, 1978.
[20] The Equations of Navier-Stokes and Abstract Parabolic Equations, Aspects of Math. E8, Vieweg, Braunschweig/Wiesbaden, 1985. · doi:10.1007/978-3-663-13911-9
[21] Giga, J. Diff. Eq. 62 pp 186– (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.