×

zbMATH — the first resource for mathematics

Validation study of vortex methods. (English) Zbl 0632.76056
Convergence of the vortex method applied to viscous, incompressible flow is demonstrated. We compute the solution of flow over a backwards-facing step for Reynolds number 50, 125, 250, 375, 500, 5000, and study the effect of the choice of numerical parameters on the accuracy of the computed solution. Within the laminar regime, we demonstrate convergence of the computed means to a time-independent solution as the numerical parameters are refined, decay of variance around the computed mean inversely proportional to the number of vortex elements, and accurate comparison of size and length of recirculation zones with experimental measurements as a function of Reynolds number. At higher Reynolds number, we show detailed and robust calculations of eddy shedding and pairing, and qualitative numerical convergence in such flow variables as eddy size and average velocity profiles.

MSC:
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abbot, D.E.; Kline, S.J., J. basic eng., 317, (1962)
[2] Anderson, C.; Greengard, C., SIAM J. numer. anal., 22, 413, (1985)
[3] Armaly, B.F.; Durst, F.; Pereira, J.C.F.; Schonung, B., J. fluid mech., 127, 473, (1983)
[4] Ashurst, W.T., ()
[5] Beale, J.T.; Majda, A., Math. comput., 39, 1, (1982)
[6] Beale, J.T.; Majda, A., Math. comput., 39, 29, (1982)
[7] Bradshaw, P.; Wong, F.Y.F., J. fluid mech., 52, 113, (1972)
[8] Castro, I.P., (), 329
[9] Cheer, A.Y., SIAM J. sci. statist. comput., 4, 685, (1983)
[10] Chorin, A.J., J. fluid mech., 57, 785, (1973)
[11] Chorin, A.J., J. comput. phys., 27, 428, (1978)
[12] del Prete, V.M.; Hald, O.H., Math. comput., 32, 791, (1978)
[13] Denham, M.K.; Patrick, M.A., Trans. inst. chem. eng., 52, 361, (1974)
[14] Durst, F.; Tropea, C., ()
[15] Eaton, J.K.; Johnston, J.P., ()
[16] Etheridge, D.W.; Kemp, P.H., J. fluid mech., 86, 3, 545, (1978)
[17] Ghoniem, A.F.; Chorin, A.J.; Oppenheim, A.K., Philos. trans. soc. London A, 304, 303, (1982) · Zbl 0478.76066
[18] Ghoniem, A.F.; Sethian, J.A., Aiaa j., 25, No.1, 168, (1985)
[19] Goldstein, R.J.; Eriksen, V.L.; Olson, R.M.; Eckert, E.R.G., Trans. ASME, 732, (1970)
[20] {\scJ. Goodman}, “Convergence of the random vortex method,” preprint. · Zbl 0644.76022
[21] Hackman, L.P.; Raithby, G.D.; Strong, A.B., Int. J. numer. method fluids, 4, 711, (1984)
[22] Hald, O.H., SIAM J. numer. anal., 16, 726, (1979)
[23] Hald, O.H., J. comput. phys., 40, 305, (1981)
[24] {\scO. H. Hald}, “The flowmap for Euler’s equations,” preprint.
[25] Honji, H., J. fluid mech., 69, 229, (1975)
[26] Johnston, J.P., ()
[27] Krasny, R., J. comput. phys., 65, 292, (1986)
[28] {\scJ. L. Kueny and G. Binder}, preprint.
[29] Landau, L.D.; Lifshitz, E.M., Fluid mechanics, (1975), Pergammon New York · Zbl 0146.22405
[30] Leonard, A., J. comput. phys., 37, 289, (1980)
[31] Leonard, A., ()
[32] Leschziner, M.A., Computer methods appl. mech. eng., 23, 293, (1980)
[33] Majda, A.; Sethian, J.A., Combust. sci. technol., 42, 185, (1985)
[34] Marchioro, C.; Pulvirenti, M., Commun. math. phys., 84, 483, (1982)
[35] McCracken, M.F.; Peskin, C.S., J. comput. phys., 35, 183, (1980)
[36] Moss, W.D.; Baker, S.; Bradbury, L.J.S., ()
[37] Periaux, J.; Pironneau, O.; Thomasset, F., ()
[38] Perlman, M., J. comput. phys., 59, 200, (1985)
[39] Roberts, S., J. comput. phys., 58, 29, (1985)
[40] {\scJ. A. Sethian}, Identifying and tracking coherent structures in turbulent flow, in progress.
[41] Sethian, J.A., ()
[42] Sethian, J.A., J. comput. phys., 55, 425, (1984)
[43] Sethian, J.A.; Ghoniem, A.F., CPAM report 325, (June 1986), (unpublished)
[44] Sethian, J.A., ()
[45] Sethian, J.A., (), 29
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.