×

zbMATH — the first resource for mathematics

Where do we stand on measures of uncertainty, ambiguity, fuzziness, and the like? (English) Zbl 0633.94026
The paper gives an extensive exposure of two alternative ways of developing fuzzy set theory. They reflect two fundamentally different types of uncertainty involved, namely vagueness and ambiguity. Vagueness refers to concepts which do not possess sharp boundaries. A concept of fuzzy set specified by its membership function introduced by Zadeh lies in this area of interest. Ambiguity is associated with one-to-many relations, viz. situations in which a choice between some alternatives is left unspecified. It refers to fuzzy measure defined in the power set P(X) of all sets in X (the fuzzy measure \(g:P(X)\to [0,1]\) satisfies properties of (i) \(g(\emptyset)=0,\) \(g(X)=1,\) (ii) monotonicity \(g(A)\leq g(B)\) for \(A\subset B,\) \((iii)\quad g(\lim_{n\to \infty}A_ n)=\lim_{n\to \infty}g(A_ n)\) for any monotonic sequence of sets \(A_ 1\), \(A_ 2\),..., \(A_ n\),....).
A list of measures of vagueness (called measures of fuzziness) is studied. Afterwards measures of ambiguity attached to belief and plausibility measures as nonspecifity, dissonance and confusion are investigated. In sequel links existing between uncertainty, information and system complexity are indicated.
Reviewer: W.Pedrycz

MSC:
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aczél, J.; Daróczy, Z., On measures of information and their characterizations, (1975), Academic Press New York · Zbl 0345.94022
[2] Aczél, J.; Forte, B.; Ng, C.J., Why the Shannon and Hartley entropies are ‘natural’, Adv. in appl. probab., 6, 131-146, (1974) · Zbl 0277.94011
[3] Ashby, W.R., Two tables of identities governing information flows within large systems, ASC comm., 1, 3-8, (1969)
[4] Ashby, W.R., Information flows within co-ordinated systems, (), 57-64
[5] Ashby, W.R., Systems and their informational measures, (), 78-97
[6] Atlan, H., Information theory, (), 9-41
[7] Batle, N.; Trillas, E., Entropy and fuzzy integral, J. math. anal. appl., 69, 469-474, (1979) · Zbl 0421.28015
[8] Black, M., Vagueness: an exercise in logical analysis, Philosophy of science, 4, 427-455, (1937)
[9] Boltzmann, L., Vorlesugen über gastheorie, (1896), J.A. Barth Leipzig
[10] Brillouin, L., Science and information theory, (1956), Academic Press New York · Zbl 0071.13104
[11] Broekstra, G., C-analysis of C-structures, Internat. J. gen. systems, 7, 33-61, (1981) · Zbl 0477.93006
[12] Cavallo, R.E.; Klir, G.J., Reconstruction of possibilistic behavior systems, Fuzzy sets and systems, 8, 175-197, (1982) · Zbl 0489.93009
[13] Cherry, C., On human communication, (1957), M.I.T. Press Cambridge, MA
[14] Christensen, R., Entropy minimax sourcebook, ()
[15] Conant, R.C., Laws of information which govern systems, IEEE trans. systems man cybernet., 6, 240-255, (1976) · Zbl 0338.94010
[16] Conant, R.C., The information transfer required in regulatory processes, IEEE trans. systems sci. cybernet., 5, 334-338, (1969) · Zbl 0184.18503
[17] Conant, R.C., Information flows in hierarchical systems, Internat. J. gen. systems, 1, 9-18, (1974) · Zbl 0429.90038
[18] Cornacchio, J.V., Maximum-entropy complexity measures, Internat. J. gen. systems, 3, 215-225, (1977) · Zbl 0381.60097
[19] De Luca, A.; Termini, S., A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory, Inform. and control, 20, 301-312, (1972) · Zbl 0239.94028
[20] De Luca, A.; Termini, S., Entropy of L-fuzzy sets, Inform. and control, 24, 55-73, (1974) · Zbl 0277.94014
[21] Dolby, J.L., On the notions of ambiguity and information loss, Behavioral sci., 22, 290-298, (1977)
[22] Dubois, D.; Prade, H., Fuzzy sets and systems: theory and applications, (1980), Academic Press New York · Zbl 0444.94049
[23] Dubois, D.; Prade, H., A class of fuzzy measures based on triangular norms, Internat. J. gen. systems, 8, 43-61, (1982) · Zbl 0473.94023
[24] Dubois, D.; Prade, H., A note on measures of specificity for fuzzy sets, Internat. J. gen. systems, 10, 279-283, (1985) · Zbl 0569.94032
[25] Dubois, D.; Prade, H., A set-theoretic view of belief functions, Internat. J. gen. systems, 12, (1986) · Zbl 0605.03021
[26] Dubois, D.; Prade, H., Properties of measures of information in evidence and possibility theories, Fuzzy sets and systems, 24, 161-182, (1987), (this issue) · Zbl 0633.94009
[27] Ferdinand, A.E., A theory of system complexity, Internat. J. gen. systems, 1, 19-33, (1974) · Zbl 0434.93007
[28] Forte, B., Why Shannon entropy, () · Zbl 0326.94014
[29] Gaines, B.R., System identification, approximation and complexity, Internat. J. gen. systems, 3, 145-174, (1977) · Zbl 0343.93016
[30] Gaines, B.R., Precise past-fuzzy future, Internat. J. man-machine stud., 19, 117-134, (1983)
[31] Goguen, J.A., L-fuzzy sets, J. math. anal. appl., 18, 145-174, (1967) · Zbl 0145.24404
[32] Good, I.J., Maximum entropy for hypothesis formulation, especially for multidimensional contingency tables, Ann. math. statist., 34, 911-934, (1963) · Zbl 0143.40705
[33] Goodman, I.R.; Nguyen, H.T., Uncertainty models for knowledge-based systems, (1985), North-Holland New York
[34] Guiasu, S., Information theory and applications, (1977), McGraw-Hill New York
[35] Guiasu, S.; Shenitzer, A., The principle of maximum entropy, Math. intelligencer, 7, 42-48, (1985) · Zbl 0563.94008
[36] Hartley, R.V.L., Transmission of information, Bell system tech. J., 7, 535-563, (1928)
[37] Higashi, M.; Klir, G.J., On measures of fuzziness and fuzzy complements, Internat. J. gen. systems, 8, 169-180, (1982) · Zbl 0484.94047
[38] Higashi, M.; Klir, G.J., Measures of uncertainty and information based on possibility distributions, Internat. J. gen. systems, 9, 43-58, (1983) · Zbl 0497.94008
[39] Higashi, M.; Klir, G.J., On the notion of distance representing information closeness: possibility and probability distributions, Internat. J. gen. systems, 9, 103-115, (1983) · Zbl 0498.94006
[40] Higashi, M.; Klir, G.J.; Pittarelli, M.A., Reconstruction families of possibilistic structure systems, Fuzzy sets and systems, 12, 37-60, (1984) · Zbl 0529.93004
[41] Hintikka, J., On semantic information, (), 3-27 · Zbl 0209.21803
[42] Höhle, U., Fuzzy plausibility measures, (), 7-30
[43] Höhle, U., Entropy with respect to plausibility measures, (), 167-169
[44] Jaynes, E.T., Where do we stand on maximum entropy?, (), 15-118
[45] Kapur, J.N., Twenty-five years of maximum entropy principle, J. math. phys. sci., 17, 103-156, (1983) · Zbl 0516.94001
[46] Kaufmann, A., Introduction to the theory of fuzzy subsets, (1975), Academic Press New York · Zbl 0332.02063
[47] Klir, G.J., Architecture of systems problem solving, (1985), Plenum Press New York · Zbl 0648.68105
[48] Klir, G.J., Complexity: some general observations, Systems res., 2, 131-140, (1985) · Zbl 0562.93002
[49] Klir, G.J.; Mariano, M., On the uniqueness of possibilistic measure of uncertainty and information, Fuzzy sets and systems, 24, 197-219, (1987), (this issue) · Zbl 0632.94039
[50] Klir, G.J.; Parviz, B.; Higashi, M., Relationship between true and estimated possibilistic systems and their reconstructions, Internat. J. gen. systems, 12, 319-331, (1986)
[51] Klir, G.J.; Way, E.C., Reconstructability analysis: aims, results, open problems, Systems res., 2, 141-163, (1985) · Zbl 0564.93001
[52] Kornwachs, K.; von Lucadou, W., Pragmatic information as a nonclassical concept to describe cognitive processes, Cognitive systems, 1, 79-94, (1985)
[53] Knopfmacher, J., On measures of fuzziness, J. math. anal. appl., 49, 529-534, (1975) · Zbl 0308.02061
[54] Lofgren, L., Complexity of descriptions of systems; a foundational study, Internat. J. gen. systems, 3, 197-214, (1977) · Zbl 0374.93002
[55] Loo, S.G., Measures of fuzziness, Cybernetica, 20, 201-210, (1977) · Zbl 0377.04003
[56] Mathai, A.M.; Rathie, P.N., Basic concepts of information theory and statistics, (1975), John Wiley New York · Zbl 0346.94014
[57] Matheron, G., Random sets and integral geometry, (1975), John Wiley New York · Zbl 0321.60009
[58] Nguyen, H.T., On entropy of random sets and possibility distributions, () · Zbl 0651.60002
[59] Padet, C., Comparative properties of several entropies in information observation theory, Kybernetes, 14, 17-24, (1985) · Zbl 0555.94005
[60] Ramer, A., Uniqueness of information measure in the theory of evidence, Fuzzy sets and systems, 24, 183-196, (1987), (this issue) · Zbl 0638.94027
[61] Rényi, A., Probability theory, (), 540-616 · Zbl 1328.68293
[62] Reza, F.M., An introduction to information theory, (1961), McGraw-Hill New York
[63] Shackle, G.L.S., Decision, order and time in human affairs, (1969), Cambridge Univ. Press Cambridge
[64] Shackle, G.L.S., Imagination and the nature of choice, (1979), Edinburgh Univ. Press Edinburgh
[65] Shafer, G., A mathematical theory of evidence, (1976), Princeton Univ. Press Princeton, NJ · Zbl 0359.62002
[66] Shannon, C.E.; Shannon, C.E., The mathematical theory of communication, Bell system tech. J., Bell system tech. J., 27, 623-656, (1948) · Zbl 1154.94303
[67] Shore, J.E.; Johnson, R.W., Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy, IEEE trans. inform. theory, 26, 26-37, (1980) · Zbl 0429.94011
[68] Sugeno, M., Fuzzy measures and fuzzy integrals: a survey, (), 89-102
[69] Trillas, E.; Riera, T., Entropies in finite fuzzy sets, Inform. sci., 15, 159-168, (1978) · Zbl 0436.94012
[70] Van Der Lubbe, J.C.A., A generalized class of certainty and information, Inform. sci., 32, 187-215, (1984) · Zbl 0553.94005
[71] Van Emden, M.H., An analysis of complexity, (1971), Mathematical Centre Amsterdam · Zbl 0225.68015
[72] Walley, P.; Fine, T.L., Varieties of model (classificatory) and comparative probability, Synthese, 41, 321-374, (1979) · Zbl 0442.60005
[73] Watanabe, S., Knowing and guessing, (1969), John Wiley New York · Zbl 0206.20901
[74] Watanabe, S., Pattern recognition as a guest for minimum entropy, Pattern recognition, 13, 381-387, (1981) · Zbl 0462.62045
[75] Watanabe, S., Pattern recognition: human and mechanical, (1985), John Wiley New York
[76] Weaver, W., Science and complexity, Amer. scientist, 36, 536-544, (1968)
[77] Yager, R.R., On the measure of fuzziness and negation. part I: membership in the unit interval, Internat. J. gen. systems, 5, 221-229, (1979) · Zbl 0429.04007
[78] Yager, R.R., On the measure of fuzziness and negation. part II: lattices, Inform and control, 44, 236-260, (1980) · Zbl 0429.04008
[79] Yager, R.R., On a general class of fuzzy connectives, Fuzzy sets and systems, 4, 235-242, (1980) · Zbl 0443.04008
[80] Yager, R.R., Measuring tranquility and anxiety in decision making: an application of fuzzy sets, Internat. J. gen. systems, 8, 139-146, (1982) · Zbl 0487.90007
[81] Yager, R.R., Entropy and specificity in a mathematical theory of evidence, Internat. J. gen. systems, 9, 249-260, (1983) · Zbl 0521.94008
[82] Zadeh, L.A., Fuzzy sets, Inform. and control, 8, 338-353, (1965) · Zbl 0139.24606
[83] Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility, Fuzzy sets and systems, 1, 3-28, (1978) · Zbl 0377.04002
[84] Zadeh, L.A., Outline of a new approach to the analysis of complex systems and decision processes, IEEE trans. systems man cybernet., 1, 28-44, (1973) · Zbl 0273.93002
[85] Zadeh, L.A., On the validity of Dempster’s rule of combination of evidence, ()
[86] Zadeh, L.A., A simple view of the Dempster-Shafer theory of evidence, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.