zbMATH — the first resource for mathematics

Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons. (English. Russian original) Zbl 0634.17010
Funct. Anal. Appl. 21, No. 1-3, 126-142 (1987); translation from Funkts. Anal. Prilozh. 21, No. 2, 46-63 (1987).
From the text: “The goal of the present paper is the construction of regular analogs of Virasoro algebras and Verma modules, connected with nontrivial Riemann surfaces of genus \(g>0\). Although the goal cited is basic, we also consider briefly another physically important example of algebras, the current algebras. The concluding section of the paper is devoted to connection of this theory with the theory of solitons.”
Reviewer: Niels Jacob

17B68 Virasoro and related algebras
14H55 Riemann surfaces; Weierstrass points; gap sequences
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
30F99 Riemann surfaces
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
Full Text: DOI
[1] S. Mandelstam, ”Dual resonance models,” Phys. Rep.,13, 259-353 (1974). · doi:10.1016/0370-1573(74)90034-9
[2] A. Belavin, A. Zamolodchkov, and A. Polyakov, ”An infinite conformal group in quantum field theory,” Preprint, Inst. Theor. Phys., Moscow (1983).
[3] D. Friedan, in: Recent Advances in Field Theory and Statistical Mechanics, North-Holland, Les Houches (1984).
[4] A. A. Belavin and V. Knizhnik, ”Complex geometry and the theory of quantum strings,” Zh. Éksp. Teor. Fiz.,91, No. 2(8), 364-391 (1986). · Zbl 0693.58043
[5] J. N. Shwartz, ”Superstring theory,” Phys. Reports,89, 223-322 (1982). · Zbl 0578.22027 · doi:10.1016/0370-1573(82)90087-4
[6] B. L. Feigin and D. B. Fuks, ”Skew-symmetric invariant differential operators on the line and Verma modules over the Virasoro algebra,” Funkts. Anal. Prilozhen.,16, No. 2, 47-63 (1982). · Zbl 0493.46061 · doi:10.1007/BF01081809
[7] D. Mumford, ”On the stability of the algebraic variaters,” Math. E’ns L’Ens,23, 39-55 (1977). · Zbl 0363.14003
[8] I. M. Krichever, ”Algebraic curves and nonlinear difference equations,” Usp. Mat. Nauk,33, No. 4, 215-216 (1978). · Zbl 0382.39003
[9] I. M. Krichever, ”Spectral theory of ?finite-zone? nonstationary Schrödinger operators. Nonstationary Peierls model,” Funkts. Anal. Prilozhen.,20, No. 2, 42-54 (1986). · Zbl 0637.35060
[10] I. V. Cherednik, ”Differential equations for Baker?Akhiezer functions,” Funkts. Anal. Prilozhen.,12, No. 3, 45-54 (1978). · Zbl 0385.35019
[11] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, ”Nonlinear equations of Korteweg?de Vries type, finite-zone linear operators and Abelian varieties,” Usp. Mat. Nauk,31, No. 1, 55-136 (1976). · Zbl 0326.35011
[12] V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: Method of the Inverse Problem [in Russian], Nauka, Moscow (1980). · Zbl 0598.35002
[13] I. M. Krichever, ”Methods of algebraic geometry in the theory of nonlinear equations,” Usp. Mat. Nauk,32, No. 6, 183-208 (1977). · Zbl 0372.35002
[14] B. A. Dubrovin, ”Theta-functions and nonlinear equations,” Usp. Mat. Nauk,36, No. 2, 11-80 (1981). · Zbl 0478.58038
[15] I. M. Krichever and S. P. Novikov, ”Holomorphic bundles over algebraic curves and nonlinear equations,” Usp. Mat. Nauk,35, No. 6, 47-68 (1980). · Zbl 0501.35071
[16] B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, ”Integrable systems. I,” in: Contemporary Problems of Mathematics: Fundamental Directions [in Russian], Itogi Nauki i Tekhniki, VINITI AN SSSR, Moscow, Vol. 4 (1985), pp. 210-315.
[17] I. M. Krichever, ”Laplace’s method, algebraic curves, and nonlinear equations,” Funkts. Anal. Prilozhen.,18, No. 3, 43-56 (1984).
[18] H. Bateman and A. Erdelyi, Higher Transcendental Functions [Russian translation], Nauka, Moscow (1974).
[19] B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, ”Schrödinger’s equation in a periodic field and Riemann surfaces,” Dokl. Akad. Nauk SSSR,229, No. 1, 15-18 (1976). · Zbl 0441.35021
[20] I. M. Krichever, ”Algebrogeometric construction of Zakharov?Shabat equations and their periodic solutions,” Dokl. Akad. Nauk SSSR,227, No. 2, 291-294 (1976).
[21] A. Yu. Orlov and E. I. Shul’man, ”Supplementary symmetries of integrable systems and representations of conformal algebra,” Inst. Avtomatiki i Élektrometrii Sib. Otd. Akad. Nauk SSSR, Novosibirsk, Preprint No. 217 (1984).
[22] A. Yu. Orlov and E. I. Shul’man, ”Supplementary symmetries of two-dimensional integrable systems,” Inst. Avtom. i Élektrometrii Sib. Otd. AN SSSR, Novosibirsk, Preprint No. 277 (1985).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.