zbMATH — the first resource for mathematics

Vector-valued Laplace transforms and Cauchy problems. (English) Zbl 0637.44001
The author symmetrically treats linear differential equations in Banach spaces with the help of Laplace transforms. The central tool used is an “integrated version” of Widder’s theorem (characterising Laplace transforms of bounded functions). It holds in any Banach space, whereas the vector-valued version of Widder’s theorem itself holds if and only if the Banach space has the Radon - Nikodým property. The Hille-Yosida theorem and other generation theorems are immediate consequences. The technique presented in the paper can be applied to operators whose domains are not dense.
Reviewer: S.D.Bajpai

44A10 Laplace transform
34G10 Linear differential equations in abstract spaces
47D03 Groups and semigroups of linear operators
Full Text: DOI
[1] W. Arendt,Resolvent positive operators, Porc. London Math. Soc., to appear. · Zbl 0617.47029
[2] E. B. Davies,One-parameter Semigroups, Academic Press, London, 1980. · Zbl 0457.47030
[3] E. B. Davies and M. M. H. Pang,The Cauchy problem and a generalization of the Hille-Yosida theorem, preprint, 1986.
[4] J. Chazarain,Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, J. Functional Anal.7 (1971), 387–446. · Zbl 0211.12902 · doi:10.1016/0022-1236(71)90027-9
[5] G. Da Prato and E. Sinestrari,Differential operators with nondense domain and evolution equations, preprint, 1985.
[6] J. Diestel and J. J. Uhl,Vector Measures, Amer. Math. Soc., Providence, Rhode Island, 1977.
[7] H. O. Fattorini,The Cauchy Problem, Addison-Wesley, London, 1983. · Zbl 0493.34005
[8] H. O. Fattorini,Second Order Differential Equations in Banach Spaces, North-Holland, Amsterdam, 1985. · Zbl 0564.34063
[9] W. Feller,On the generation of unbounded semigroups of bounded linear operators, Ann. Math. (2)58 (1953), 166–174. · Zbl 0050.34201 · doi:10.2307/1969826
[10] J. A. Goldstein,Semigroups of Operators and Applications, Oxford University Press, New York, 1985. · Zbl 0592.47034
[11] E. Hille and R. S. Phillips,Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publications, Vol. 31, Providence, R.I., 1957. · Zbl 0078.10004
[12] H. Kellermann,Integrated semigroups, Dissertation, Tübingen, 1986. · Zbl 0604.47025
[13] J. Kisyński,Semi-groups of operators and some of their applications to partial differential equations, inControl Theory and Topics in Functional Analysis, Vol. II, IAEA, Vienna, 1976.
[14] S. G. Krein and M. I. Khazan,Differential equations in a Banach space, J. Soviet Math.30 (1985), 2154–2239. · Zbl 0611.34059 · doi:10.1007/BF02105398
[15] J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces I, Springer-Verlag, Berlin, 1977. · Zbl 0362.46013
[16] J. L. Lions,Semi-groupes distributions, Portugalae Math.19 (1960), 141–164. · Zbl 0103.09001
[17] I. Miyadera,Generation of a strongly continuous semi-groups of operators, Tôhoku Math. J.2 (1952), 109–114. · Zbl 0048.09304 · doi:10.2748/tmj/1178245412
[18] I. Miyadera,On the representation theorem by the Laplace transformation of vector-valued functions, Tôhoku Math. J.8 (1956), 170–180. · Zbl 0073.08602 · doi:10.2748/tmj/1178244980
[19] I. Miyadera, S. Oharu and N. Okazawa,Generation theorems of linear operators, PRIMS, Kyoto Univ.8 (1973), 509–555. · Zbl 0262.47030 · doi:10.2977/prims/1195192960
[20] R. Nagel (ed.),One-parameter Semigroups of Positive Operators, Lecture Notes in Math.1184, Springer, Berlin, 1986. · Zbl 0585.47030
[21] F. Neubrander,Integrated semigroups and their applications to the abstract Cauchy problem, preprint, 1986. · Zbl 0589.34004
[22] A. Pazy,Semi-groups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983. · Zbl 0516.47023
[23] R. S. Phillips,Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc.74 (1953), 199–221. · Zbl 0053.08704 · doi:10.1090/S0002-9947-1953-0054167-3
[24] H. H. Schaefer,Banach Lattices and Positive Operators, Springer, Berlin, 1974. · Zbl 0296.47023
[25] M. Sova,Problèmes de Cauchy pour équations hyperboliques operationelles à coéfficients non-bornés, Ann. Scuola Norm. Sup. Pisa22 (1968), 67–100.
[26] Y. Sova,Problèmes de Cauchy paraboliques abstraits de classes supérieurs et les semigroupes distributions, Ricerche Mat.18 (1969), 215–238. · Zbl 0196.16301
[27] D. V. Widder,The inversion of the Laplace integral and the related moment problem, Trans. Amer. Math. Soc.36 (1934), 107–200. · Zbl 0008.30603 · doi:10.1090/S0002-9947-1934-1501737-7
[28] D. V. Widder,An Introduction to Transform Theory, Academic Press, New York, 1971. · Zbl 0219.44001
[29] K. Yosida,Functional Analysis, Springer, Berlin, 1978. · Zbl 0365.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.