×

Dynamical entropy of C *-algebras and von Neumann algebras. (English) Zbl 0637.46073

In [Acta Math. 134, 289-306 (1975; Zbl 0326.46032)] A. Connes and E. Störmer defined the concept of dynamical entropy for antomorphism groups of Von Neumann algebras in the tracial case. Here this concept is extended in the general case to C * and Von Neumann algebras covering the relevant cases of physical systems at finite temperature.
Reviewer: G.Loupias

MSC:

46L55 Noncommutative dynamical systems
81T05 Axiomatic quantum field theory; operator algebras
82B10 Quantum equilibrium statistical mechanics (general)

Citations:

Zbl 0326.46032
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kolmogorov, A.N.: Dokl. Akad. Nauk119, 861 (1958)
[2] Sinai, Yu.: Dokl. Akad. Nauk124, 768 (1959)
[3] Ruelle, D.: Thermodynamic formalism. Reading, Ma: Addison-Wesley 1978 · Zbl 0401.28016
[4] Ruelle, D., Bowen, L.: Invent. Math.29, 181 (1975) · Zbl 0311.58010
[5] Lanford, O.E., Robinson, D.W.: Mean entropy states in quantum statistical mechanics. J. Math. Phys.9, 120 (1968) · Zbl 0174.28303
[6] Aizenman, M., Goldstein, S., Gruber, C., Lebowitz, J.L., Martin, P.: On the equivalence between KMS-states and equilibrium states for classical systems. Commun. Math. Phys.53, 209 (1977)
[7] Lindblad, G.: Quantum ergodicity and chaos. In: Fundamental aspects of quantum theory, p. 199. Gorini, V., Frigerio, A. (eds.). New York: Plenum Press 1986
[8] Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys.14, 1938 (1973)
[9] Connes, A., Störmer, E.: Acat Math.134, 289 (1975) · Zbl 0326.46032
[10] Emch, G.: Acta Phys. Austr. [Suppl.]XV, 79 (1976)
[11] Moore, S.M.: Rev. Colomb. Mat.X, 57 (1976)
[12] Narnhofer, H., Thirring, W.: Fizika17, 257 (1985)
[13] Connes, A.: C.R. Acad. Sci. Paris t301, I, 1 (1985)
[14] Lieb, E.H.: Adv. Math.11, 267 (1973) · Zbl 0267.46055
[15] Araki, H.: Pub. Res. Inst. Math. Sci.9, 165 (1973) · Zbl 0273.46054
[16] Kosaki, H.: Interpolation theory and the Wigner-Yanase-Dyson-Lieb concavity. Commun. Math. Phys.87, 315 (1982) · Zbl 0521.46064
[17] Pusz, W., Woronowicz, S.: Form convex functions and the WYDL and other inequalities. Lett. Math. Phys.2, 505 (1978) · Zbl 0436.46016
[18] Choi, M.D., Effros, E.G.: Ann. Math.104, 585 (1976) · Zbl 0361.46067
[19] Choi, M.D., Effros, E.G.: J. Funct. Anal.24, 156 (1977) · Zbl 0341.46049
[20] Connes, A., Störmer, E.: J. Funct. Anal.28, 187 (1978) · Zbl 0408.46048
[21] Accardi, L., Cecchini, C.: Conditional expectations in von Neumann algebras and a theorem of Takesaki. J. Funct. Anal.45, 245-273 (1982) · Zbl 0483.46043
[22] Araki, H.: Gibbs states of a one dimensional quantum lattice. Commun. Math. Phys.14, 120 (1969) · Zbl 0199.28001
[23] Narnhofer, H.: Thermodynamical phases and surface effects. Acta Phys. Austr.54, 221 (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.