×

A class of nonconvex functions and mathematical programming. (English) Zbl 0639.90082

Summary: A class of functions, called pre-invex, is defined. These functions are more general than convex functions and when differentiable are invex. Optimality conditions and duality theorems are given for both scalar- valued and vector-valued programs involving pre-invex functions.

MSC:

90C30 Nonlinear programming
49N15 Duality theory (optimization)
26B25 Convexity of real functions of several variables, generalizations
90C31 Sensitivity, stability, parametric optimization
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1080/01630568708816230 · Zbl 0646.49014
[2] DOI: 10.1007/BF02591748 · Zbl 0579.90083
[3] Craven, J. Austral. Math. Soc. (Ser. A) 39 pp 1– (1985)
[4] Craven, Bull. Aust. Math. Soc. 24 pp 357– (1981)
[5] Craven, Dept. Math. University of Melbourne Research Report 37 (1980)
[6] Craven, Bull. Austral. Math. Soc. 16 pp 325– (1977)
[7] DOI: 10.1007/BF00934807 · Zbl 0229.90041
[8] DOI: 10.1016/0022-247X(81)90188-8 · Zbl 0474.90081
[9] DOI: 10.1007/BF00934908 · Zbl 0445.90082
[10] DOI: 10.1017/S0334270000005142 · Zbl 0603.90119
[11] DOI: 10.1007/BF00941316 · Zbl 0552.90077
[12] Mangasarian, Nonlinear Programming (1969)
[13] Kuhn, Proceedings of the Second Berkely Symposium on Mathematical Statistics and Probability pp 481– (1951)
[14] Kaul, Opsearch 19 pp 212– (1982)
[15] DOI: 10.1080/02331938508843061 · Zbl 0581.90079
[16] DOI: 10.1080/02331938508843043 · Zbl 0584.90089
[17] DOI: 10.1007/BF00934081 · Zbl 0471.49033
[18] Hanson, Convez Transformable Programming Problems and Invezity (1985)
[19] DOI: 10.1016/0022-247X(81)90123-2 · Zbl 0463.90080
[20] Wolfe, Quart. Appl. Math. 19 pp 239– (1961)
[21] DOI: 10.1007/BF00933437 · Zbl 0378.90100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.