zbMATH — the first resource for mathematics

Moment-preserving spline approximation on finite intervals. (English) Zbl 0644.41005
The authors discuss the problem of approximating a function f on the interval [0,1] by a spline function of degree m, with n (variable) knots, matching as many of the initial moments of f as possible. Additional constraints on the derivates of the approximation at one endpoint of [0,1] may also be imposed. They show that, if the approximations exist, they can be represented in terms of generalized Gauss-Lobatto and Gauss- Radau quadrature rules relative to appropriate moment functionals or measures (depending on f). Pointwise convergence as \(n\to \infty\), for fixed \(m>0\), is shown for functions f that are completely monotonic on [0,1], among others. Numerical examples conclude the paper.
Reviewer: A.Bleyer

41A15 Spline approximation
65D32 Numerical quadrature and cubature formulas
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI EuDML
[1] Gautschi, W.: A survey of Gauss-Christoffel quadrature formulae. In: E.B. Christoffel, Butzer, P.L., Fehér, F. (eds.), pp. 72–147. Basel: Birkhäuser 1981 · Zbl 0479.65001
[2] Gautschi, W.: On generating orthogonal polynomials. SIAM J. Sci. Stat. Comput.3, 289–317 (1982) · Zbl 0482.65011 · doi:10.1137/0903018
[3] Gautschi, W.: An algorithmic implementation of the generalized Christoffel theorem. In: Numerische Integration. Hämmerlin, G. (ed.)., Internat. Ser. Numer. Math., vol. 57, pp. 89–106. Basel: Birkhäuser 1982 · Zbl 0518.65006
[4] Gautschi, W.: Discrete approximations to spherically symmetric distributions. Numer. Math.44, 53–60 (1984) · Zbl 0508.65012 · doi:10.1007/BF01389754
[5] Gautschi, W.: Some new applications of orthogonal polynomials. In: Polynômes orthogonaux et applications. Brezinski, C., Draux, A., Magnus, A.P., Maroni, P., Ronveaux, A. (eds.), Lecture Notes Math., vol. 1171, pp. 63–73. Berlin-Heidelberg-New York-Tokyo: Springer 1985 · Zbl 0658.42028
[6] Gautschi, W., Milovanović, G.V.: Spline approximations to spherically symmetric distributions. Numer. Math.49, 111–121 (1986) · Zbl 0586.41009 · doi:10.1007/BF01389619
[7] Golub, G.H., Kautsky, J.: Calculation of Gauss quadratures with multiple free and fixed knots. Numer. Math.41, 147–163 (1983) · Zbl 0525.65010 · doi:10.1007/BF01390210
[8] Widder, D.V.: The Laplace Transform. Princeton: University Press 1941 · Zbl 0063.08245
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.