×

Cardinality of the system of all sequential convergences on an Abelian lattice ordered group. (English) Zbl 0645.06006

The author investigates the number of convergence structures which can be defined on a given abelian lattice-ordered group G. Let \(L_ G\) denote the set of all “compatible” convergence structures which can be introduced on G (a list of 9 axioms defines a convergence on G). One defines \(b(G)=\sup \{card(A):\) A is an orthogonal subset of \(G\}\). The main results of the paper are: (1) If \(b(G)\geq \aleph_ 0\), then \(card(L_ G)\geq 2^{2^{\aleph_ 0}}\), and this estimate is sharp. (2) If b(G) is the integer n, then there is an integer k with \(0\leq k\leq n\) such that \(card(L_ G)=2^ k\). (3) Suppose integers n and k satisfy \(0\leq k\leq n\). Then there exists a proper class \(\{\) G(i): i in \(I\}\) of nonisomorphic abelian lattice-ordered groups G(i) such that for each i in I the relations \(b(G(i))=n\) and card \(L_{G(i)}=2^ k\) are valid.
Reviewer: S.P.Hurd

MSC:

06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] G. Birkhoff: Lattice Theory. Third, Amer. Math. Soc, Providence 1967. · Zbl 0153.02501
[2] P. Conrad: Lattice ordered groups. Tulane University 1970. · Zbl 0258.06011
[3] E. Čech B. Pospíšil: Sur les caractères des points dans les espaces S. Publ. Fac. Sci. Univ. Masaryk, No. 258) · JFM 64.0614.04
[4] C. J. Everett S. Ulam: On ordered groups. Trans. Amer. Math. Soc, 57 (1945), 208-216. · Zbl 0061.03406
[5] L. Fuchs: Partially ordered algebraic systems. Pergamon Press, Oxford 1963. · Zbl 0137.02001
[6] M. Harminc: Sequential convergences on abelian lattice-ordered groups. Convergence Structures 1984 (Proc on Convergence, Bechyně 1984). Akademie-Verlag Berlin, 1985, 153-158.
[7] F. Hausdorff: Grundzüge der Mengenlehre. Veit & Co., Leipzig 1914. · JFM 45.0123.01
[8] T. Jech: Set Theory. Academic Press, New York 1978. · Zbl 0419.03028
[9] P. Mikusiňski: Problems posed at the conference. Proc Conference on Convergence, Szczyrk 1979, Katowice 1980, 110-112.
[10] J. Novák: On convergence groups. Czechoslovak Math. J., 20 (1970), 357-374. · Zbl 0217.08504
[11] B. Šmarda: Topologies in l-groups. Archivum Math. (Brno), T. 3 (1967), 69-81. · Zbl 0224.06013
[12] B. Šmarda: Some types of topological 1-groups. Publ. Fac. Sci. Univ. J. E. Purkyně (Brno), 507 (1969), 341-352.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.