The iterated Galerkin method for linear integro-differential equations. (English) Zbl 0646.65095

The iterated Galerkin method is applied to the approximate solution of linear integro-differential equations. The author gets results similar to those of I. H. Sloan [Treatment of integral equations by numerical methods, Proc. Symp., Durham 1982, 197-207 (1982; Zbl 0502.65076)], which studied the superconvergence for the approximate solution of integral equations of the second kind. Two approaches are presented to obtain superconvergence for the first iterates of the Galerkin procedure in the spaces \(W_ 2^ m\) and \(C^ m\).
Reviewer: L.Hącia


65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations


Zbl 0502.65076
Full Text: DOI


[1] Anger, B.; Bauer, H., Mehrdimensionale Integration (1976), De Gruyter: De Gruyter Berlin/New York · Zbl 0314.28007
[2] Anselone, P. M., Collectively Compact Operator Approximation Theory (1971), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0228.47001
[3] Anselone, P. M.; Lee, J. W., Double approximation methods for the solution of Fredholm integral equations, (Collatz, L.; Werner, H.; Meinardus, G., Numerische Methoden der Approximationstheorie, Bd. 3 (1976), Birkhäuser: Birkhäuser Basel/Stuttgart), 9-34 · Zbl 0336.65058
[4] Atkinson, K. E., A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind (1976), SIAM: SIAM Philadelphia · Zbl 0353.65069
[5] Collatz, L., Gewöhnliche Differentialgleichungen (1981), Teubner: Teubner Stuttgart · Zbl 0475.34001
[6] de Boor, C., A bound on the \(L_∞\)-norm of \(L_2\)-approximation by splines in terms of a global mesh ratio, Math. Comp., 30, 765-771 (1976) · Zbl 0345.65004
[7] Graham, I. G.; Joe, S.; Sloan, I. H., Galerkin versus collocation for integral equations of the second kind, (Research report 22-1983 (1983), University of Melbourne) · Zbl 0586.65091
[8] Ikebe, Y., The Galerkin method for the numerical solution of Fredholm integral equations of the second kind, SIAM Rev., 14, 465-491 (1972) · Zbl 0221.65189
[9] Ince, E. L., Ordinary Differential Equations (1956), Dover: Dover New York · Zbl 0063.02971
[10] Kneschke, A., Differentialgleichungen und Randwertprobleme, Bd. I, Gewöhnliche Differentialgleichungen (1965), Teubner: Teubner Leipzig · Zbl 0156.31201
[11] Phillips, J. L., The use of collocation as a projection method for solving linear operator equations, SIAM J. Numer. Anal., 9, 14-28 (1972) · Zbl 0204.48004
[12] Schumaker, L. L., Spline Functions: Basic Theory (1981), Wiley: Wiley New York · Zbl 0449.41004
[13] Sloan, I. H., Improvement by iteration for compact operator equations, Math. Comp., 30, 758-764 (1976) · Zbl 0343.45010
[14] Sloan, I. H., Superconvergence and the Galerkin method for integral equations of the second kind, (Baker, C. T.H.; Miller, G. F., Treatment of Integral Equations by Numerical Methods (1982), Academic Press: Academic Press London), 197-207 · Zbl 0502.65076
[15] Volk, W., Die numerische Behandlung Fredholmscher Integralgleichungen zweiter Art mittels Splinefunktionen, Report of the Hahn-Meitner-Institute HMI-B 286 (1979), Berlin · Zbl 0403.65054
[16] Report of the Hahn-Meitner-Institute HMI-B 381 (1982), Berlin · Zbl 0483.65077
[17] Volk, W., The numerical solution of linear integro differential equations by projection methods, J. Integral Equations, 9, 171-190 (1985), suppl. · Zbl 0586.65096
[18] Volk, W., Globale Superkonvergenz bei der Lösung von linearen Randwertaufgaben, Numer. Math., 48, 617-625 (1986) · Zbl 0562.65058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.