zbMATH — the first resource for mathematics

Extended Luenberger observer for nonlinear multivariable systems. (English) Zbl 0648.93022
This paper presents a detailed generalization to multivariable systems of a paper by the second author [Syst. Control Lett. 9, 149-156 (1987; Zbl 0624.93012)], dealing only with the single-input case. First the nonlinear observer canonical form for multivariable systems is discussed. Then it is shown that the transformation into such a form, as well as the design of the extended Luenberger observer, can be performed completely similar as in the single-input case.
Reviewer: A.van der Schaft

93C10 Nonlinear systems in control theory
93B10 Canonical structure
93C35 Multivariable systems, multidimensional control systems
93B17 Transformations
Full Text: DOI
[1] ACKERMANN J., Abtastregelungen (1972)
[2] DOI: 10.1080/00207178308933084 · Zbl 0521.93012 · doi:10.1080/00207178308933084
[3] BIRK , J. , 1987 , Entwurf nichtlinearer Beobachter mit Hilfe einer erweiterten Linearisierung . Diploma thesis , University of Stuttgart .
[4] KELLER H., Entwurf nichtlinearer Beobachter mittels Normalformen (1986)
[5] DOI: 10.1016/S0019-9958(75)90382-4 · Zbl 0319.93049 · doi:10.1016/S0019-9958(75)90382-4
[6] DOI: 10.1016/0167-6911(83)90037-3 · Zbl 0524.93030 · doi:10.1016/0167-6911(83)90037-3
[7] DOI: 10.1137/0323016 · Zbl 0569.93035 · doi:10.1137/0323016
[8] DOI: 10.1080/00207178408933297 · Zbl 0568.93007 · doi:10.1080/00207178408933297
[9] DOI: 10.1080/00207177308932395 · Zbl 0249.93006 · doi:10.1080/00207177308932395
[10] ZEITZ M., Regelungstechnik 27 pp 241– (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.