×

\(c=I\) conformal field theories on Riemann surfaces. (English) Zbl 0649.32019

The commented paper studies the class of Gaussian \(c=I\) conformal field theories which consists of the torus models describing a free massless scalar field \(\phi(z,\bar z)\) compactified on the cirl \({\mathbb{R}}/2\pi R{\mathbb{Z}}\) with the action \(({1/2}\pi) \int d^ 2z\partial \phi {\bar \partial}\phi\) and \({\mathbb{Z}}_ 2\) orbifold models which are obtained from the corresponding torus models identifying \(\phi\) with \(-\phi\). The main purpose of the paper is to investigate the structure of these theories on higher genus Riemann surfaces.
The authors analyse the partition functions on arbitrary Riemann surfaces and their behaviour under the action of modular group. The correlation functions are obtained through factorization of the partition function at the boundary of moduli space. To analyze the \(Z_ 2\) orbifold models the authors use the theory of double coverings of Riemann surfaces and theta- functions defined on Prym varieties. The equivalence of the \(R=\sqrt{2}\) orbifold and \(R=(1/2)\sqrt{2}\) torus models gives a physical interpretation of nontrivial identities between theta-functions known as Schottky relations. It appears that in contrast with toroidal models the orbifold partition functions are sensitive to the Torelli group. The operator formalism on Riemann surfaces for both torus and orbifold models is constructed and the relation with the \(\tau\)-functions of the KP and BKP hierarchy is discussed.
Reviewer: V.Enol’skij

MSC:

32G15 Moduli of Riemann surfaces, Teichm├╝ller theory (complex-analytic aspects in several variables)
35Q99 Partial differential equations of mathematical physics and other areas of application
81T08 Constructive quantum field theory
30F99 Riemann surfaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two dimensional quantum field theory. Nucl. Phys. B241, 333 (1984) · Zbl 0661.17013
[2] Kadanoff, L.P.: Phys. Rev. Lett.23, 1430 (1969)
[3] Polyakov, A.M.: ZhETP57, 271 (1969) [JETP30, 151 (1970)]
[4] Friedan, D.: Ann. Phys.163, 318 (1985) · Zbl 0583.58010
[5] Lovelace, C.: Nucl. Phys. B273, 413 (1986)
[6] Fradkin, E., Tseytlin, A.: Phys. Lett.158B, 316 (1985)
[7] Candelas, P., Horowitz, G., Strominger, A., Witten, E.: Nucl. Phys. B258, 46 (1985)
[8] Callan, C., Friedan, D., Martinec, E., Perry, M.: Nucl. Phys. B262, 593 (1985);
[9] Sen, A.: Phys. Rev. D32, 2102 (1985)
[10] Jain, S., Shankar, R., Wad?a, S.R.: Phys. Rev. D32, 2713 (1985)
[11] Friedan, D., Qiu, Z., Shenker, S.: Phys. Rev. Lett.52, 1575 (1984)
[12] Cardy, J.L.: Nucl. Phys. B270 [FS16], 186 (1986) · Zbl 0689.17016
[13] Gepner, D.: Nucl. Phys. B287, 111 (1987)
[14] Capelli, A., Itzykson, C., Zuber, J.B.: Nucl. Phys. B275 [FS17], 445 (1987) · Zbl 0661.17017
[15] Friedan, D., Shenker, S.: The integrable analytical geometry of quantum string. Phys. Lett.175B, 287 (1986); The analytic geometry of two-dimensional conformal field theory. Nucl. Phys. B281, 509 (1987) · Zbl 0608.17010
[16] Ishibashi, N., Matsuo, Y., Ooguri, H.: Soliton equations and free fermions on Riemann surfaces. Tokyo preprint, UT-499, 1986
[17] Alvarez-Gaum?, L., Gomez, C., Reina, C.: Loop groups, grassmannians and string theory. Phys. Lett.190B, 55 (1987); New methods in string theory, preprint CERN TH-4775/87
[18] Vafa, C.: Operator formulation on Riemann surfaces. Phys. Lett.190B, 47 (1987)
[19] Witten, E.: Conformal field theory, grassmannians and algebraic curves, Princeton preprint PUTP-1057 · Zbl 0636.22012
[20] Matsuo, Y.: Moduli space, conformal algebra and operator formulation on a Riemann surface. Tokio preprint UT-511
[21] Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Non-linear integrable systems ? Classical theory and quantum theory. Jimbo, M., Miwa, T. (eds.), Singapore: World Scientific 1983 · Zbl 0571.35098
[22] Segal, G., Wilson, G.: Loop groups and equations of the KdV type. Publ. I.H.E.S.61, 1 (1985) · Zbl 0592.35112
[23] Kadanoff, L.P.: J. Phys. A11, 1399 (1978)
[24] Nienhuis, B.: J. Stat. Phys.34, 731 (1984) · Zbl 0595.76071
[25] Dixon, L., Harvey, J.A., Vafa, C., Witten, E.: Strings on orbifolds. Nucl. Phys. B261, 620 (1985); Nucl. Phys. B274, 285 (1986)
[26] Hamidi, S., Vafa, C.: Interactions on orbifolds. Nucl. Phys. B279, 465 (1987)
[27] Dixon, L., Friedan, D., Martinec, E., Shenker, S.: The conformal field theory of orbifolds. Nucl. Phys. B282, 13 (1987)
[28] Kadanoff, L.P.: Multicritical behavior at the Kosterlitz-Thouless critical point. Ann. Phys.120, 39 (1979)
[29] Kadanoff, L.P., Brown, A.C.: Correlation functions on the critical lines of the Baxter and Askin-Teller models. Ann. Phys.121, 318 (1979)
[30] Friedan, D., Shenker, S.: Supersymmetric critical phenomena and the two dimensional gaussian model (unpublished)
[31] Yang, S.-K.: Modular invariant partition function of the Ashkin-Teller model on the critical line andN=2 superconformal invariance. Nucl. Phys. B285 [FS19], 183 (1987)
[32] Saleur, H.: Partition functions of the two dimensional Ashkin-Teller model on the critical line. Saclay preprint S. Ph-T/87-46
[33] Elitzur, S., Gross, E., Rabinovici, E., Seiberg, N.: Aspects of bosonization in string theory. Nucl. Phys. B283, 431 (1987)
[34] Fay, J.D.: Theta functions on Riemann surfaces. Lecture Notes in Mathematics, Vol. 352. Berlin, Heidelberg, New York: Springer 1973 · Zbl 0281.30013
[35] Farkas, H.M., Kra, I.: Riemann surfaces. Berlin, Heidelberg, New York: Springer 1980 · Zbl 0475.30001
[36] Di Francesco, P., Saleur, H., Zuber, J.B.: Modular invariance in non-minimal two-dimensional conformal theories. Nucl. Phys. B285 [FS19] (1987) 454; Relations between the Coulomb gas picture and conformal invariance of 2 dimensional critical models. Saclay preprint S. Ph-T/87-31
[37] Narain, K.S.: New heterotic string theories in uncompactified dimensions <10. Phys. Lett.169B, 41 (1986)
[38] Narain, K.S., Sarmadi, M.H., Witten, E.: A note on toroidal compactification of heterotic string theory. Nucl. Phys. B279, 369 (1987)
[39] Kac, V.G.: In: Lecture Notes in Physics, Vol. 94, p. 441. Berlin, Heidelberg, New York: Springer 1979 · Zbl 0438.01011
[40] Gepner, D., Witten, E.: String theory on group manifolds. Nucl. Phys. B278, 493 (1986)
[41] Narain, K.S., Sarmadi, M.H., Vafa, C.: Asymmetric orbifolds. Nucl. Phys. B288, 551 (1987)
[42] Kobayashi, K.: Correspondence ofZ 2-orbifold string and torus string. Phys. Rev. Lett.58, 2507 (1987)
[43] Zamolodchikov, Al.B.: Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model. ZhETP90, 1808 (1986); [JETP63, 1061 (1986)]
[44] Frenkel, I.B., Lepowsky, J., Meurman, A.: A moonshine module for the monster. In: Vertex operators in mathematics and physics. Lepowsky, J., et al. (eds.). Berlin, Heidelberg, New York: Springer 1984 · Zbl 0556.17008
[45] Alvarez-Gaum?, L., Moore, G., Vafa, C.: Theta functions, modular invariance, and strings. Commun. Math. Phys.106, 1 (1986) · Zbl 0605.58049
[46] Alvarez-Gaum?, L., Bost, J.B., Moore, G., Nelson, P., Vafa, C.: Bosonization on higher genus Riemann surfaces. Phys. Lett. B178, 41 (1986); Commun. Math. Phys.112, 503 (1987) · Zbl 0647.14019
[47] Schnitzer, H., Tsokos, K.: Partition functions and fermi-bose equivalence for simply-laced groups on compact Riemann surfaces. Nucl. Phys. B291, 429 (1987)
[48] Ginsparg, P., Vafa, C.: Toroidal compactifications of non-supersymmetric heterotic string. Nucl. Phys. B289, 414 (1987)
[49] Verlinde, E., Verlinde, H.: Chiral bosonization, determinants and the string partition function. Nucl. Phys. B288, 357 (1987) · Zbl 0990.83549
[50] Friedan, D., Qiu, Z., Shenker, S.: Two dimensional superconformal invariance and the tricritical Ising model. Phys. Lett.151B, 37 (1985) · Zbl 0559.58010
[51] Miki, K.: Vacuum amplitudes without twist fields forZ N orbifold and correlation functions of twist fields forZ 2 orbifold. Phys. Lett.191B, 127 (1987)
[52] Bernard, D.:Z 2-twisted fields and bosonization on Riemann surfaces, Meudon preprint 1987
[53] Bagger, J., Nemeschansky, D., Seiberg, N., Yankielowicz, S.: Bosons, fermions, and Thirring strings. Nucl. Phys. B289, 53 (1987)
[54] Birman, J.S.: Braids, Links, and mapping class groups. Annals of Mathematic Studies, Vol. 82. Princeton, NJ: Princeton University Press 1975 · Zbl 0305.57013
[55] The following argumentation was developed in a discussion with S. Shenker
[56] Atick, J.J., Sen, A.: Correlation functions of spin operators on a torus. Nucl. Phys. B286, 189 (1987)
[57] Bershadsky, N., Radul, A.: Conformal field theories with additionalZ N symmetry. Int. J. Mod. Phys. A2, 165 (1987) · Zbl 1165.81373
[58] Zamolodchikov, Al.B.: Conformal scalar field on the hyperelliptic curve and critical Ashkin-Teller multipoint correlation functions. Nucl. Phys. B285 [FS19], 481 (1987)
[59] Di Francesco, P., Saleur, H., Zuber, J.B.: Critical Ising correlation functions in the plane and on the torus. Saclay preprint S. Ph-T/87-097
[60] Gunning, R.C.: Lectures on Riemann surfaces. Princeton, NJ: Princeton University Press 1966 · Zbl 0175.36801
[61] Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Quasi-periodic solutions of the orthogonal KP equation. Publ. RIMS. Kyoto Univ.18, 1111 (1982) · Zbl 0571.35101
[62] Ginsparg, P.: Private communication
[63] Kiritsis, E.B.: A bosonic representation of the Ising model. Preprint CALT-68-1442
[64] Atick, J.J., Dixon, L.J., Griffin, P.A., Nemeschansky, D.D.: Multi-loop twist field correlation functions forZ N orbifolds. Preprint SLAC-PUB-4273
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.