Bayly, B. J. Three-dimensional centrifugal-type instabilities in inviscid two- dimensional flows. (English) Zbl 0651.76018 Phys. Fluids 31, No. 1, 56-64 (1988). The author extends the classical Rayleigh centrifugal instability theory to general inviscid two-dimensional flows, whose streamlines are convex closed curves with the magnitude of the circulation decreasing outward. Thus, a class of three-dimensional short-wave instabilities can be constructed, which are localized near the streamline cylinder. Reviewer: J.E.Ffowcs Williams Cited in 59 Documents MSC: 76E05 Parallel shear flows in hydrodynamic stability 35Q99 Partial differential equations of mathematical physics and other areas of application Keywords:Rayleigh centrifugal instability theory; inviscid two-dimensional flows; three-dimensional short-wave instabilities PDF BibTeX XML Cite \textit{B. J. Bayly}, Phys. Fluids 31, No. 1, 56--64 (1988; Zbl 0651.76018) Full Text: DOI OpenURL References: [1] J. W. S. Rayleigh, Proc. R. Soc. London Ser. A 93, 148 (1916).PRLAAZ0950-1207 [2] G. I. Taylor, Philos. Trans. R. Soc. London Ser. A 223, 289 (1923).PTRMAD0962-8428 [3] H. Görtler, Nachr. Ges. Wiss. Gottingen Math. Phys. Kl. Fachgruppe 2, 1 (1940). [4] H. Görtler, NACA Tech. Memo. 1375, 1954. [5] H. Bippes and H. Görtler, Acta Mech. 14, 251 (1972).AMHCAP0001-5970 [6] S. A. Ragab and A. H. Nayfeh, Phys. Fluids 24, 1405 (1981).PFLDAS0031-9171 [7] J. M. Floryan, Phys. Fluids 29, 2380 (1986).PFLDAS0031-9171 [8] V. I. Arnold, J. Mec. 5, 29 (1966).JOMCAR0021-7832 [9] D. Lynden-Bell and J. Katz, Proc. R. Soc. London Ser. A 378, 179 (1982).PRLAAZ1364-5021 · Zbl 0486.76034 [10] H. D. I. Abarbanel, D. D. Holm, J. E. Marsden, and T. S. Ratiu, Philos. Trans. R. Soc. London Ser. A 318, 349 (1986).PTRMAD0962-8428 [11] D. D. Holm, J. E. Marsden, T. S. Ratiu, and A. Weinstein, Phys. Rep. 123, 1 (1985).PRPLCM0370-1573 [12] H. D. I. Abarbanel and D. D. Holm, Phys. Fluids 30, 3369 (1987).PFLDAS0031-9171 [13] H. K. Moffatt, J. Fluid Mech. 173, 289 (1986).JFLSA70022-1120 [14] P. G. Drazin and W. H. Reid, Hydrodynamk Stability (Cambridge U.P., Cambridge, 1981). [15] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978). · Zbl 0417.34001 [16] W. Magnus and S. Winkler, Hill’s Equation (Wiley, New York, 1966). · Zbl 0158.09604 [17] V. I. Oseledec, Trans. Moscow Math. Soc. 19, 197 (1968).TMMSD40077-1554 [18] R. T. Pierrehumbert and S. E. Widnall, J. Fluid Mech. 114, 59 (1982).JFLSA70022-1120 [19] S. A. Orszag and A. T. Patera, J. Fluid Mech. 128, 347 (1983).JFLSA70022-1120 [20] T. Herbert, Phys. Fluids 26, 871 (1983).PFLDAS0031-9171 [21] R. T. Pierrehumbert, Phys. Rev. Lett. 57, 2157 (1986).PRLTAO0031-9007 [22] B. J. Bayly, Phys. Rev. Lett. 57, 2160 (1986).PRLTAO0031-9007 [23] M. J. Landman and P. G. Saffman, Phys. Fluids 30, 2339 (1987).PFLDAS0031-9171 [24] L. N. Howard and A. S. Gupta, J. Fluid Mech. 14, 463 (1962).JFLSA70022-1120 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.