zbMATH — the first resource for mathematics

Detecting changes in signals and systems - a survey. (English) Zbl 0653.93051
This is a survey paper devoted to an actual and important problem arising in speech and image recognition and in monitoring of systems: change detection in signal and systems. It is based on a large amount of papers (79 references) most of them issued after 1980. The paper treats the stochastic approach to the problem, the deterministic one is only reported. The general tool upon which the attention is focused is the likelihood ratio approach whose associated algorithms can be directly and easily implemented. Some important situations are extensively discussed: detecting jumps in the (stochastic) mean, changes in the spectral properties or eigenstructure, etc. The paper will be undoubtly of great use to those working in the area of the above mentioned domain.
Reviewer: D.Stanomir

93E10 Estimation and detection in stochastic control theory
60G35 Signal detection and filtering (aspects of stochastic processes)
62A01 Foundations and philosophical topics in statistics
62N05 Reliability and life testing
93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
93C55 Discrete-time control/observation systems
90B25 Reliability, availability, maintenance, inspection in operations research
Full Text: DOI
[1] Andersson, P., Adaptive forgetting in recursive identification through multiple models, Int. J. control, 42, 1175-1193, (1985) · Zbl 0595.93064
[2] André-Obrecht, R., A new statistical approach for the automatic segmentation of continuous speech signals, IEEE trans. acoust. speech. sig. process., ASSP-36, 29-40, (1988)
[3] Appel, U.; Brandt, A.V., Adaptive sequential segmentation of piecewise stationary time series, Inf. sci., 29, (1983) · Zbl 0584.62155
[4] Basseville, M., Edge detection using sequential methods for change in level—part II: sequential detection of change in Mean, IEEE trans. acoust. speech. sig. process., ASSP-29, 32-50, (1981)
[5] Basseville, M., Contribution à la détection séquentielle de ruptures de modèles statistiques, (), (survey in English)
[6] Basseville, M.; Benveniste, A., Design and comparative study of some sequential jump detection algorithms for digital signals, IEEE trans. acoust. speech. sig. process., ASSP-31, 521-534, (1983)
[7] Basseville, M.; Benveniste, A., Sequential detection of abrupt changes in spectral characteristics of digital signals, IEEE trans. inf. theory, 29, 709-724, (1983) · Zbl 0511.94008
[8] (), LNCIS no. 77
[9] Basseville, M.; Benveniste, A.; Moustakides, G.; Rougée, A., Detection and diagnosis of changes in the eigenstructure of nonstationary multivariable systems, Automatica, 23, 479-489, (1987) · Zbl 0625.93060
[10] Basseville, M.; Espiau, B.; Gasnier, J., Edge detection using sequential methods for change in level—part I: A sequential edge detection algorithm, IEEE trans. acoust. speech. sig. process., ASSP-29, 16-31, (1981)
[11] Benveniste, A.; Basseville, M.; Moustakides, G., The asymptotic local approach to change detection and model validation, IEEE trans. aut. control, 32, 583-592, (1987) · Zbl 0628.93071
[12] Benveniste, A.; Fuchs, J.J., Single sample modal identification of a nonstationary stochastic process, IEEE trans. aut. control, 30, 66-74, (1985) · Zbl 0557.93066
[13] Bodenstein, G.; Praetorius, H.M., Feature extraction from the encephalogram by adaptive segmentation, (), 642-652
[14] Bojdecki, T.; Hosza, J., On a generalized disorder problem, (), 349-359 · Zbl 0549.60038
[15] Bouthemy, P., A maximum-likelihood framework for determining moving edges in image sequences, Research report IRISA no. 365/INRIA no. 696, (1987)
[16] Britov, G.S.; Mironovski, L.A., Diagnostics of linear systems of automatic regulation, Tekh. kibern., 1, 76-83, (1972)
[17] Chow, E.Y.; Lou, X.C.; Verghese, G.C.; Willsky, A.S., Redundancy relations and robust failure detection, (), 275-294, Chapter 9
[18] Chow, E.Y.; Willsky, A.S., Issues in the development of a general algorithm for reliable failure detection, ()
[19] Chow, E.Y.; Willsky, A.S., Analytical redundancy and the design of robust failure detection systems, IEEE trans. aut. control, 29, 603-615, (1984) · Zbl 0542.90040
[20] Corge, J.; Puech, F., Analyse du rythme cardiaque foetal par des méthodes de détection de rupture, (), (in French) · Zbl 0592.92009
[21] Darkhovskii, B.S., On two estimation problems for times of change of the probabilistic characteristics of a random sequence, Theory probab. applic., 29, 478-487, (1985) · Zbl 0611.62112
[22] Deckert, J.C.; Desaï, M.N.; Deyst, J.J.; Willsky, A.S., F-8 DFBW sensor failure identification using analytic redundancy, IEEE trans. aut. control, 22, 795-803, (1977)
[23] Desaï, M.; Ray, A., A fault detection and isolation methodology—theory and application, (), 262-270
[24] Deshayes, J.; Picard, D., Off-line statistical analysis of change-point models using non parametric and likelihood methods, (), 103-168, Chapter 5
[25] Favier, G.; Smolders, A., Adaptive smoother-predictors for tracking maneuvering targets, (), 831-836
[26] Friedlander, B.; Porat, B., Detection of transient signals by the Gabor representation, (), 1692-1695
[27] Gray, A.H.; Markel, J.D., Distance measures for speech processing, IEEE trans. acoust. speech. sig. process., ASSP-24, 380-391, (1976)
[28] Gustavson, D.E.; Willsky, A.S.; Wang, J.Y.; Lancaster, M.C.; Triebwasser, J.H., ECG/VCG rhythm diagnosis using statistical signal analysis. part I: identification of persistent rhythms, IEEE trans. biomed. engng, 25, 344-353, (1978)
[29] Gustavson, D.E.; Willsky, A.S.; Wang, J.Y.; Lancaster, M.C.; Triebwasser, J.H., ECG/VCG rhythm diagnosis using statistical signal analysis. part II: identification of transient rhythms, IEEE trans. biomed. engng, 25, 353-361, (1978)
[30] Himmelblau, D.M., ()
[31] Hinkley, D.V., Inference about the change-point from cumulative sum tests, Biometrika, 58, 509-523, (1971) · Zbl 0254.62019
[32] Iserman, R., Process fault detection based on modeling and estimation methods—a survey, Automatica, 20, 387-404, (1984)
[33] Ishii, N.; Iwata, A.; Suzumura, N., Segmentation of nonstationary time-series, Int. J. syst. sci., 10, 883-894, (1979) · Zbl 0415.62068
[34] Ishii, N.; Sugimoto, H.; Iwata, A.; Suzumura, N., Computer classification of the EEG time-series by Kullback information measure, Int. J. syst. sci., 11, 677-688, (1980) · Zbl 0465.62094
[35] Kailath, T., Linear systems, (1980), Prentice-Hall Englewood Cliffs, NJ · Zbl 0458.93025
[36] Kassam, S.A., A bibliography on non-parametric detection, IEEE trans. inf. theory, 26, 595-602, (1980) · Zbl 0466.62096
[37] Kedem, B.; Slud, E., Time series discrimination by higher order crossings, Ann. statist., 10, 786-794, (1982) · Zbl 0515.62084
[38] Kerr, T.H., Decentralized filtering and redundancy management/failure detection for multisensor integrated navigation systems, ()
[39] Kligene, N.I.; Tel’ksnys, L.A., Methods of detecting instants of change of random process properties, Automn remote control, 44, 1241-1283, (1983) · Zbl 0541.93063
[40] Lehmann, E.L., ()
[41] Lorden, G., Procedures for reacting to a change in distribution, Ann. math. statist., 42, 1897-1908, (1971) · Zbl 0255.62067
[42] Madiwale, A.; Friedland, B., Comparison of innovations-based analytical redundancy methods, (), 940-945
[43] Massoumnia, M.A., A geometric approach to the synthesis of failure detection filters, IEEE trans. aut. control, 31, 839-846, (1986) · Zbl 0599.93017
[44] Mehra, R.K.; Peschon, J., An innovations approach to fault detection and diagnosis in dynamic systems, Automatica, 7, 637-640, (1971)
[45] Mironovski, L.A., Functional diagnosis of linear dynamic systems, Automn remote control, 40, 120-128, (1979)
[46] Mirononovski, L.A., Functional diagnosis of dynamic systems—a survey, Automn remote control, 41, 1122-1143, (1980)
[47] Mottl’, V.V.; Muchnik, I.B.; Yakovlev, V.G., Optimal segmentation of experimental curves, Automn remote control, 44, 1035-1044, (1983)
[48] Moustakides, G.M., Optimal procedures for detecting changes in distributions, Ann. statist., 14, 1379-1387, (1986) · Zbl 0612.62116
[49] Moustakides, G.M., The problem of diagnosis with respect to physical parameters for changes in structures, Research report IRISA no. 295, (1986)
[50] Moustakides, G.M.; Benveniste, A., Detecting changes in the AR parameters of a nonstationary ARMA process, Stochastics, 16, 137-155, (1986) · Zbl 0598.62105
[51] Nikiforov, I.V., (), (in Russian)
[52] Nikiforov, I.V., Sequential detection of changes in stochastic systems, (), 216-258, Chapter 7
[53] Nikiforov, I.V.; Tikhonov, I.N., Application of change detection theory to seismic signal processing, (), 355-373, Chapter 12
[54] Page, E.S., Continuous inspection schemes, Biometrika, 41, 100-115, (1954) · Zbl 0056.38002
[55] Pattipati, K.R.; Sandell, N.R., A unified view of state estimation in switching environments, (), 458-465
[56] Pattipati, K.R.; Willsky, A.S.; Deckert, J.C.; Eterno, J.S.; Weiss, J.S., A design methodology for robust failure detection and isolation, (), 1755-1762
[57] Pau, L.F., ()
[58] Pelkowitz, L., The general discrete time disorder problem, Stochastics, 20, 89-110, (1987) · Zbl 0618.60041
[59] Perriot-Mathonna, D., Recursive stochastic estimation of parameters subject to random jumps, IEEE trans. aut. control, 29, 962-969, (1984) · Zbl 0547.93061
[60] Peterka, V., Bayesian approach to system identification, () · Zbl 0451.93059
[61] Prevosto, M.; Barnouin, B.; Hoen, C., Frequency versus time domain identification of complex structures modal shapes under natural excitation, () · Zbl 0544.93071
[62] Ray, A.; Desaï, Calibration and estimation in multiple redundant measurement systems, (), 1212-1218
[63] Rougée, A.; Basseville, M.; Benveniste, A.; Moustakides, G., Optimum robust detection of changes in the AR part of a multivariable ARMA process, IEEE trans. aut. control, 32, 1116-1120, (1987) · Zbl 0628.93064
[64] Roussas, G.G., ()
[65] Sanderson, A.C.; Segen, J., Hierarchical modelling of EEG signals, IEEE trans. pattern analysis and machine intelligence, 2, 405-414, (1980)
[66] Sastri, T., Sequential method of change detection and adaptive prediction of municipal water demand, Int. J. syst. sci., 18, 1029-1049, (1987) · Zbl 0611.93059
[67] Segen, J.; Sanderson, A.C., Detecting changes in a time-series, IEEE trans. inf. theory, 26, 249-255, (1980) · Zbl 0458.62083
[68] Shaban, S.A., Change-point problem and two-phase regression: an annotated bibliography, Int. statist. rev., 48, 83-93, (1980) · Zbl 0432.62050
[69] Shiryaev, A.N., On optimum methods in quickest detection problems, Theory probab. applic., 8, 22-46, (1963) · Zbl 0213.43804
[70] Shiryaev, A.N., ()
[71] ()
[72] Tugnait, J.K., Detection and estimation for abruptly changing systems, Automatica, 18, 607-615, (1982) · Zbl 0496.93053
[73] Tugnait, J.K., Adaptive estimation and identification for discrete systems with Markov jump parameters, IEEE trans. aut. control, 27, 1054-1064, (1982) · Zbl 0494.93045
[74] Usoro, P.B.; Schick, I.C.; Negahdaripour, S., An innovation-based methodology for HVAC system fault detection, Trans. ASME, 107, 284-289, (1985)
[75] Willsky, A.S., A survey of design methods for failure detection in dynamic systems, Automatica, 12, 601-611, (1976) · Zbl 0345.93067
[76] Willsky, A.S.; Chow, E.Y.; Gershwin, S.B.; Greene, C.S.; Houpt, P.K.; Kurkjan, A.L., Dynamic model-based techniques for the detection of incidents on freeways, IEEE trans. aut. control, 25, 347-360, (1980) · Zbl 0497.90023
[77] Willsky, A.S.; Deyst, J.J.; Crawford, B.S., Two self-test methods applied to an inertial system problem, J. spacecraft rockets, 12, 434-437, (1975)
[78] Willsky, A.S.; Jones, H.L., A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems, IEEE trans. aut. control, 21, 108-112, (1976) · Zbl 0316.93038
[79] Yashchin, E., On a unified approach to the analysis of two-sided cumulative sum control schemes with headstarts, Adv. appl. probab., 17, 562-593, (1985) · Zbl 0589.62087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.