×

zbMATH — the first resource for mathematics

Noether’s theorem for singular Lagrangians. (English) Zbl 0655.58028
Summary: The correspondence between constants of motion and symmetries of a singular Lagrangian system is studied. It is shown to be a one-to-one correspondence after an appropriate definition of both concepts. The theory is illustrated with an example.

MSC:
37C80 Symmetries, equivariant dynamical systems (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Crampin, M., J. Phys. A. Math. Geb. 16, 3755 (1983). · Zbl 0536.58004 · doi:10.1088/0305-4470/16/16/014
[2] Crampin, M. and Thompson, G., Math. Proc. Cambridge Philos. Soc. 98, 61 (1985). · Zbl 0572.53031 · doi:10.1017/S0305004100063246
[3] Marmo, G. and Mukunda, M., Nuovo Cim. 92B, 1 (1986). · doi:10.1007/BF02729691
[4] Gotay, M. J., Nester, J. M., and Hinds, G., J. Math. Phys. 19, 2388 (1978). · Zbl 0418.58010 · doi:10.1063/1.523597
[5] Cantrijn, F., Cariñena, J. F., Crampin, M., and Ibort, L. A., J. Geom. Phys. 3, 353 (1986). · Zbl 0621.58020 · doi:10.1016/0393-0440(86)90014-8
[6] Cariñena, J. F. and Ibort, L. A., J. Phys. A. Math. Gen. 18, 3335 (1985). · Zbl 0588.58020 · doi:10.1088/0305-4470/18/17/014
[7] Marmo, G., Saletan, E. J., Simoni, A., and Vitale, B., Dynamical Systems, A Differential Geometric Approach to Symmetry and Reduction, Wiley, Chichester, 1985. · Zbl 0592.58031
[8] Sarlet, W., Geometrical Structures Related to Second-Order Equations, Proceedings of the Conference on Differential Geometry and its Applications, Brno 1986 (to appear). · Zbl 0635.58017
[9] Marmo, G. and Saletan, E. J., Nuovo Cim. 40B, 67 (1977). · doi:10.1007/BF02739181
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.