Viscous flow with large free surface motion. (English) Zbl 0655.76032

An arbitrary Lagrangian-Eulerian (ALE) Petrov-Galerkin finite element technique is developed to study nonlinear viscous fluids under large free surface wave motion. A review of the kinematics and field equations from an arbitrary reference is presented and since the major challenge of the ALE description lies in the mesh rezoning algorithm, various methods, including a new mixed formulation, are developed to update the mesh and map the moving domain in a more rational manner. Moreover, the streamline-upwind/Petrov-Galerkin formulation is implemented to accurately describe highly convective free surface flows. The effectiveness of the algorithm is demonstrated on a tsunami problem, the dam-break problem where the Reynolds number is taken as high as 3000, and a large-amplitude sloshing problem.


76D33 Waves for incompressible viscous fluids
76R10 Free convection
76M99 Basic methods in fluid mechanics
Full Text: DOI Link


[1] Belytschko, T.; Kennedy, J.M., Computer models for subassembly simulation, Nucl. engrg. design, 49, 17-38, (1978)
[2] Belytschko, T.; Kennedy, J.M.; Schoeberie, D.F., Quasi-Eulerian finite element formulation for fluid structure interaction, ASME J. pressure vessel technol., 102, 62-69, (1980)
[3] Belytschko, T.; Liu, W.K., Computer methods for transient fluid-structure analysis of nuclear reactors, Nuclear safety, 26, 14-31, (1985)
[4] Bird, R.B.; Armstrong, R.C.; Hassager, O., Dynamics of polymeric liquids, ()
[5] Brugnot, G.; Pochet, R., Numerical simulation study of avalanches, J. glaciology, 27, 95, 77-88, (1981)
[6] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. meths. appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[7] Carey, G.F.; Oden, J.T., Finite elements: fluid mechanics, ()
[8] Chen, C.; Armbruster, J.T., Dam-break wave model: formulation and verification, ASCE J. hydraulics div., 106, HY5, 747-767, (1980)
[9] Donea, J., Arbitrary Lagrangian-Eulerian finite element methods, (), 473-516
[10] Donea, J., A Taylor-Galerkin method for convective transport problems, Internat. J. numer. meths. engrg., 20, 101-119, (1984) · Zbl 0524.65071
[11] Donea, J.; Fasoli-Stella, P.; Giuliani, S., Lagrangian and Eulerian finite element techniques for transient fluid structure interaction problems, (), Paper B1/2
[12] Dressler, R.F., Hydraulic resistance effect upon the dam-break functions, J. res. nat. bur. standards, 49, 3, 217-225, (1952)
[13] Goring, D.G., Tsunamis—the propagation of long waves onto a shelf, dissertation, (1978), California Institute of Technology Pasadena, CA
[14] Heinrich, J.C.; Huyakorn, P.S.; Zienkiewicz, O.C.; Mitchell, A.R., An upwind finite element scheme for two-dimensional convective transport, Internat. J. numer. meths. engrg., 11, 131-145, (1977) · Zbl 0353.65065
[15] Heinrich, J.C.; Zienkiewicz, O.C., The finite element method and “upwinding” techniques in the numerical solution of convection dominated flow problems, (), 105-136 · Zbl 0436.76062
[16] Hirt, C.W.; Amsden, A.A.; Cook, J.L., An arbitrary Lagrangian Eulerian computing method for all flow speeds, J. comput. phys., 14, 227-253, (1974) · Zbl 0292.76018
[17] Huerta, A., Numerical modeling of slurry mechanics problems, ()
[18] Huerta, A.; Liu, W.K., Viscous flow structure interaction, J. pressure vessel technol., 110, 15-21, (1988)
[19] Hughes, T.J.R., A simple scheme for developing upwind finite elements, Internat. J. numer. meths. engrg., 12, 1359-1365, (1978) · Zbl 0393.65044
[20] Hughes, T.J.R.; Brooks, A.N., A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure, (), 47-65
[21] Hughes, T.J.R.; Liu, W.K., Implicit-explicit finite elements in transient analysis, J. appl. mech., 45, 371-378, (1978) · Zbl 0392.73076
[22] Hughes, T.J.R.; Liu, W.K.; Zimmerman, T.K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. meths. appl. mech. engrg., 29, 329-349, (1981) · Zbl 0482.76039
[23] Hughes, T.J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. the generalized streamline operator for multidimensional advective-diffusive systems, Comput. meths. appl. mech. engrg., 58, 305-328, (1986) · Zbl 0622.76075
[24] Hughes, T.J.R.; Tezduyar, T.E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput. meths. appl. mech. engrg., 45, 217-284, (1984) · Zbl 0542.76093
[25] Hutter, K.; Vulliet, L., Gravity-driven slow creeping flow of a thermoviscous body at elevated temperatures, J. thermal stresses, 99-138, (1985)
[26] Jeyapalan, J.K., Analysis of flow failures of mine tailings impoundments, ()
[27] Keentok, M.; Milthorpe, J.F.; O’Donovan, E., On the shearing zone around rotating vanes in plastic liquids: theory and experiment, J. non-Newtonian fluid mech., 17, 23-35, (1985)
[28] Liu, W.K.; Belytschko, T.; Chang, H., An arbitrary Lagrangian-Eulerian finite element method for path-dependent materials, Comput. meths. appl. mech. engrg., 58, 227-246, (1986) · Zbl 0585.73117
[29] Liu, W.K.; Chang, H.G., Efficient computational procedures for long-time duration fluid-structure interaction problems, ASME J. pressure vessel technol., 106, 317-322, (1984)
[30] Liu, W.K.; Chang, H.G., A method of computation for fluid structure interaction, Comput. & structures, 20, 1-3, 311-320, (1985) · Zbl 0583.73077
[31] Liu, W.K.; Chang, H.; Belytschko, T., Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua, Comput. methods. appl. mech. engrg., 68, 259-310, (1988) · Zbl 0626.73076
[32] Liu, W.K.; Gvildys, J., Fluid structure interactions of tanks with an eccentric core barrel, Comput. meths. appl. mech. engrg., 58, 51-57, (1986) · Zbl 0595.73045
[33] Liu, W.K.; Lam, D.; Belytschko, T., Finite element method for hydrodynamic mass with nonstationary fluid, Comput. meths. appl. mech. engrg., 44, 177-211, (1984) · Zbl 0526.76101
[34] Liu, W.K.; Ma, D., Computer implementation aspects for fluid structure interaction problems, Comput. meths. appl. mech. engrg., 31, 129-148, (1982) · Zbl 0478.73061
[35] Löhner, R.; Morgan, K.; Zienkiewicz, O.C., The solution of nonlinear hyperbolic equations systems by the finite element method, Internat. J. numer. meths. fluids, 4, 1043-1063, (1984) · Zbl 0551.76002
[36] Ma, D.C.; Gvildys, J.; Chang, Y.W.; Liu, W.K., Seismic behavior of liquid-filled shells, Nucl. engrg. design, 72, 437-455, (1982)
[37] Malvern, L.E., Introduction to the mechanics of a continuous medium, (1965), Prentice-Hall Englewood Cliffs, NJ · Zbl 0044.40001
[38] Muto, K.; Kasai, Y.; Nakahara, M.; Ishida, Y., Experimental tests on sloshing response of a water pool with submerged blocks, (), 209-214
[39] Noh, W.F., CEL: A time-dependent two-space-dimensional coupled eulerian-Lagrangian code, ()
[40] O’Donovan, E.J.; Tanner, R.I., Numerical study of the Bingham squeeze film problem, J. non-Newtonian fluid mech., 15, 75-83, (1984) · Zbl 0544.76006
[41] Ramaswamy, B.; Kawahara, M.; Nakayama, T., Lagrangian finite element method for the analysis of two-dimensional sloshing problems, Internat. J. numer. meths. fluids, 6, 659-670, (1986) · Zbl 0597.76026
[42] Ritchmyer, R.D.; Morton, K.W., Difference methods for initial-value problems, (1967), Interscience New York · Zbl 0155.47502
[43] Ritter, A., Die fortpflanzung der wasserwellew, Z. vereines deutscher ingenieure, 36, 33, 947-954, (1892)
[44] Sakkas, J.G.; Strelkoff, T., Dimensionless solution of dam-break flood waves, ASCE J. hydraulics div., 102, HY2, 171-184, (1976)
[45] Strelkoff, T., One dimensional equations for open channel flow, ASCE J. hydraulics div., 95, HY3, 861-876, (1969)
[46] Tangy, P.; Fortin, M.; Choplin, L., Finite element simulation of dip coating, II: non-Newtonian fluids, Internat. J. numer. meths. fluids., 4, 459-475, (1984) · Zbl 0567.76003
[47] Whitham, G.B., The effects of hydraulic resistance in the dam-break problem, (), 399-407 · Zbl 0064.19804
[48] Zienkiewicz, O.C.; Bettess, P., Fluid-structure dynamic interaction and wave forces. an introduction to numerical treatment, Internat. J. numer. meths. engrg., 13, 1-16, (1978) · Zbl 0385.73050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.