×

Equivariant cohomologies and Kähler geometry. (English. Russian original) Zbl 0656.53062

Funct. Anal. Appl. 21, No. 4, 271-283 (1987); translation from Funkts. Anal. Prilozh. 21, No. 4, 19-34 (1987).
An action of a compact Lie group on a symplectic manifold M with symplectic form \(\omega\) is called Hamiltonian, if it preserves the form \(\omega\) and all vector fields which are generated by elements of the Lie algebra are Hamiltonian. Let \(G\times M\to M\) be such an action. Denote by MG the universal fibre space with fibre M. The author proves that there exists a closed 2-form on MG, the restriction of which to each fibre coincides with \(\omega\).
If M is a Kähler manifold and the action is holomorphic, it may be achieved that the 2-form on MG has the type (1,1). For the computation of the equivariant cohomology \(H^*_ G(M)=H^*(MG;{\mathbb{C}})\) of a manifold M the Leray spectral sequence is used, the \(E_ 2\)-term of which has the form \(E_ 2^{p,q}=H^ p(BG)\otimes H^ q(M).\) The main theorem affirms that the spectral sequence is trivial, i.e. \(E_ 2^{p,q}=E_{\infty}^{p,q}.\) The proof is based on the connection between the cohomology groups of M and those of the fixed point set.
Reviewer: S.V.Matveev

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
55N25 Homology with local coefficients, equivariant cohomology
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] I. N. Bernshtein, I. M. Gel’fand, and S. I. Gel’fand, ”Algebraic fibrations on P n and problems in linear algebra,” Funkts. Anal. Prilozhen.,12, No. 3, 66-67 (1978).
[2] S. I. Gel’fand, ”Sheaves on P n and problems in linear algebra,” appendix to: K. Okonek, M. Schneider, and H. Spindler, Vector Fibrations on Complex Projective Spaces [Russian translation], Mir, Moscow (1984).
[3] A. M. Vershik, ”Automorphic functions and number theory. II,” J. Sov. Math.,36, No. 1 (1987). · Zbl 0655.60010
[4] P. Griffits and J. Harris, Principles of Algebraic Geometry [Russian translation], Mir, Moscow (1982).
[5] M. Atiyah, ”Convexity and commuting Hamiltonians,” Bull. London Math. Soc.,14, 1-15 (1982). · Zbl 0482.58013 · doi:10.1112/blms/14.1.1
[6] M. Atiyah and R. Bott, ”The moment map and equivariant cohomology,” Topology,23, No. 1, 1-28 (1984). · Zbl 0521.58025 · doi:10.1016/0040-9383(84)90021-1
[7] N. Berline and M. Vergne, ”Classes characteristiques equivariants, formule de localisation en cohomologie équivariante,” C. R. Acad. Sci. Paris,295, 539-541 (1982). · Zbl 0521.57020
[8] N. Berline and M. Vergne, ”The equivariant index and Kirillov’s character formula,” Am. J. Math.,107, No. 5, 1159-1190 (1985). · Zbl 0604.58046 · doi:10.2307/2374350
[9] R. Bott, ”On the Chern?Weil homomorphism and the continuous cohomology of Lie groups,” Adv. Math.,11, 289-303 (1973). · Zbl 0276.55011 · doi:10.1016/0001-8708(73)90012-1
[10] A. Bruguères, ”Propriétés de convexité de l’application moment,” Sem. Bourbaki, No. 654 (1985).
[11] J. Carrell and D. Liebermann, ”Holomorphic vector fields and Kahler manifolds,” Invent. Math.,21, 303-309 (1973). · Zbl 0258.32013 · doi:10.1007/BF01418791
[12] P. Deligne, ”Théorème de Lefschetz et critéres de dégénérescence de suites spectrales,” Publ. Math. I.H.E.S.,35, 107-126 (1968). · Zbl 0159.22501
[13] P. Deligne, ”Théorie de Hodge. II, III,” Publ. Math. I.H.E.S.,40, 5-58 (1971);44, 5-78 (1974). · Zbl 0219.14007
[14] J. J. Duistermaat and G. J. Heckman, ”On the variation in the cohomology of the symplectic form of the reduced phase-space,” Invent. Math.,69, 259-269 (1982). · Zbl 0503.58015 · doi:10.1007/BF01399506
[15] T. Frankel, ”Fixed points on Kähler manifolds,” Ann. Math.,70, 1-8 (1959). · Zbl 0088.38002 · doi:10.2307/1969889
[16] V. Guilemin and S. Sternberg, ”Convexity properties of the moment mapping, I, II,” Invent. Math.,67, 491-513 (1982);77, 533-546 (1984). · Zbl 0503.58017 · doi:10.1007/BF01398933
[17] F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Math. Notes, Vol. 31, Princeton Univ. Press (1984). · Zbl 0553.14020
[18] D. Quillen, ”Spectrum of a cohomology ring, I, II,” Ann. Math.,93, 549-602 (1971). · Zbl 0247.57013 · doi:10.2307/1970770
[19] E. Witten, ”Supersymmetry and Morse theory,” J. Diff. Geom.,7, 661-692 (1982). · Zbl 0499.53056
[20] E. Witten, ”Holomorphic Morse inequalities,” Preprint, Princeton Univ. (1983). · Zbl 0588.32009
[21] A. Bialynicki-Birula, ”Some theorems on actions of algebraic groups,” Ann. Math.,98, 480-497 (1973). · Zbl 0275.14007 · doi:10.2307/1970915
[22] J. B. Carrell and A. J. Sommese, ”Some topological aspects of C-actions on compact Kähler manifolds,” Commun. Math. Helv.,54, 567-582 (1979). · Zbl 0466.32015 · doi:10.1007/BF02566293
[23] J.-L. Brylinski, ”Equivariant intersection cohomology,” Preprint I.H.E.S., M, 86, 30 (1986).
[24] D. Quillen, ”Rational homotopy theory,” Ann. Math.,90, 205-295 (1969). · Zbl 0191.53702 · doi:10.2307/1970725
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.