Hopf bifurcation in Beck’s problem. (English) Zbl 0657.35011

A so-called Beck’s problem is to determine the stability of a column with one end welded to a rigid support and the other end subjected to a compressive follower force. This problem is reduced to the treatment of a quasi-linear parabolic system: \[ {\dot \nu}_ t=A{\dot \nu}_{xx}- A\theta^ 2_ x{\dot \nu}+f[\nu,\eta,\theta,{\dot \eta},{\dot \theta}] \]
\[ {\dot \eta}_ t=B{\dot \eta}_{xx}-B\theta^ 2_ x{\dot \eta}+g[\nu,\eta,\theta,{\dot \nu},{\dot \theta}] \]
\[ {\dot \theta}_ t=(C/I){\dot \theta}_{xx}+h[\nu,\eta,\theta,{\dot \nu},{\dot \eta}]. \] In this paper it is proved that the equilibrium can be lost by Hopf bifurcation and that viscosity can cause destabilization.
Reviewer: J.H.Tian


35B32 Bifurcations in context of PDEs
35K55 Nonlinear parabolic equations
35B35 Stability in context of PDEs
Full Text: DOI


[1] Anderson, G.L.; Vasilakis, J.D.; Wu, J.J., The influence of tip mass offset on the stability of Beck’s column, J. sound vibration, 62, 475-480, (1979) · Zbl 0393.73047
[2] Antman, S.S., The theory of rods, (), 641-703
[3] Antman, S.S., Kirchhoff’s problem for nonlinearly elastic rods, Q. appl. math., 32, 221-240, (1974) · Zbl 0302.73031
[4] Bolotin, V.V., Nonconservative problems of the theory of elastic stability, (1963), Pergamon Press Oxford · Zbl 0121.41305
[5] Brown, R., Dynamic stability of one-dimensional nonlinearly viscoelastic bodies, Archs ration. mech. analysis, 68, 257-282, (1978) · Zbl 0401.73064
[6] Chen, M., Hopf bifurcation in Beck’s problem, () · Zbl 0657.35011
[7] Chernoff, P.; Marzden, J., On continuity and smoothness of group actions, Bull. am. math. soc., 76, 1044, (1970) · Zbl 0202.23202
[8] Chow, S-N; Hale, J.K., Methods of bifurcation theory, (1982), Springer
[9] Hassard, B.D.; Kazarinoff, N.D.; Wan, Y-H., Theory and applications of Hopf bifurcation, (1981), Cambridge University Press · Zbl 0474.34002
[10] Herrmann, G., Stability of equilibrium of elastic systems subjected to nonconservative forces, Appl. mech. rev., 20, 103-108, (1967)
[11] Herrmann, G.; Jong, C., On the destabilizing effect of damping in non-conservative elastic systems, Trans. ASME, 592-597, (1965)
[12] Iooss, G.; Joseph, D., Elementary stability and bifurcation theory, (1980), Springer · Zbl 0443.34001
[13] Irie, T.; Yamada, G.; Takahashi, I., Vibration and stability of a nonuniform Timoshenko beam subject to a follower force, J. sound vibrat., 70, 503-513, (1980) · Zbl 0441.73082
[14] Johnston, R.L., Numerical methods, (1982), Wiley New York · Zbl 0556.65002
[15] Kolkka, R.W., On the nonlinear Beck’s problem with external damping, Int. J. nonlinear mech., (1985)
[16] Lady┼żenskaya, O.A.; Solonikov, V.A.; Ural’ceva, N.N., Linear and quasilinear equations of parabolic type, ()
[17] Marsden, J.; McCracken, N., The Hopf bifurcation and its application, (1976), Springer-Verlag · Zbl 0346.58007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.