zbMATH — the first resource for mathematics

Riemannian metrics on tangent bundles. (English) Zbl 0658.53045
Given a Riemannian manifold M, the tangent bundle TM and its sphere subbundle \(T_ 1M\) are studied as Riemannian manifolds equipped with the Sasaki metrics. Unlike most literature about this topics, the authors use Cartan’s method of moving frames. They construct a natural class of metrics on TM containing the Sasaki metric and also a complete metric introduced by Cheeger and Gromoll as particular cases. Deformations of the Sasaki metric on \(T_ 1M\) are also studied, and the Einstein metric defined by S. Kobayashi is recovered in this way. As concerns the Riemannian geometry of TM, the authors prove that the constant scalar curvature implies flatness. (The last fact has been proved independently by M. Fernández and M. de León, Rend. Semin. Fac. Sci. Univ. Cagliari 56, No.1, 11–19 (1986; Zbl 0676.53042)].
Reviewer: O.Kowalski

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
Full Text: DOI
[1] Berger, E.; Bryant, R.; Griffiths, P., The Gauss equations and rigidity of isometric embeddings, Duke Math. Journal, 50, 803-892 (1983) · Zbl 0526.53018
[2] Besse, A. L., Manifolds all of whose Geodesics are Closed (1978), Berlin, Heidelberg, New York: Springer-Verlag, Berlin, Heidelberg, New York · Zbl 0387.53010
[3] Blair, D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., no. 509 (1976), Berlin, Heidelberg, New York: Springer-Verlag, Berlin, Heidelberg, New York · Zbl 0319.53026
[4] Calabi, E., Métriques kähleriennes et fibrés holomorphes, Ann. Sci. Norm. Sup., 12, 269-294 (1979) · Zbl 0431.53056
[5] Cheeger, J.; Ebin, D. G., Comparison Theorems in Riemannian Geometry (1975), Amsterdam: North-Holland Publ. Company, Amsterdam · Zbl 0309.53035
[6] Cheeger, J.; Gromoll, D., On the structure of complete manifolds of nonnegative curvature, Ann. Math., 96, 413-443 (1972) · Zbl 0246.53049
[7] Chern, S. S., Topics in Differential Geometry, Lecture Notes (1951), Princeton: Institute for Advanced Study, Princeton · Zbl 0054.06801
[8] Chern, S. S.; Hamilton, R. S., On Riemannian metrics adapted to three-dimensional contact manifolds, Arbeitstagüng Bonn 1984 Proceedings, Lecture Note in Math., no. 1111 (1985), Berlin, Heidelberg, New York: Springer-Verlag, Berlin, Heidelberg, New York · Zbl 0561.53039
[9] Dombrowski, P., On the geometry of the tangent bundle, J. reine und angew. Math., 210, 73-78 (1962) · Zbl 0105.16002
[10] Jensen, G., Einstein metrics on principal fibre bundles, J. Diff. Geom., 8, 599-614 (1973) · Zbl 0284.53038
[11] Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry (1963), New York: Intersc. Publ., New York · Zbl 0119.37502
[12] Kobayashi, S., Topology of positively pinched Kähler manifolds, Tôhoku Math. J., 15, 121-139 (1963) · Zbl 0114.37601
[13] Kobayashi, S., Transformation Groups in Differential Geometry (1972), Berlin, Heidelberg, New York: Springer-Verlag, Berlin, Heidelberg, New York · Zbl 0246.53031
[14] Klingenberg, W.; Sasaki, S., On the tangent sphere bundle of a 2-sphere, Tôhoku Math. J., 27, 49-56 (1975) · Zbl 0309.53036
[15] Kowalski, O., Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold, J. reine und angew. Math., 250, 124-129 (1971) · Zbl 0222.53044
[16] O.Kowalski - M.Sekizawa,Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundle-a classification, preprint, Prague (1986). · Zbl 0656.53021
[17] Sanini, A., Applicazioni armoniche tra fibrati tangenti unitari, Rend. Sem. Mat. Univ. Pol. Torino, 43, 159-170 (1985)
[18] Singer, I. M., Infinitesimally homogeneous spaces, Comm. on Appl. and Pure Math., 13, 685-697 (1960) · Zbl 0171.42503
[19] Yano, K.; Ishihara, S., Tangent and Cotangent Bundles (1973), New York: M. Dekker Inc., New York · Zbl 0262.53024
[20] Wolf, J. A., Spaces of Constant Curvature (1977), Berkeley: Publish or Perish, Berkeley
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.