Galeev, Eh. M. Orders of orthoprojection diameters of classes of periodic functions of one and several variables. (Russian) Zbl 0659.42008 Mat. Zametki 43, No. 2, 197-211 (1988). Let \(x^{(k)}(t)\), \(t\in R\), be the derivative of fractional order k in the sense of formal differentiation of the Fourier series of a \(2\pi\)- periodic function x(t), and let \(\tilde W^ k_ p=\{x:\) \(\| x^{(k)}\|_ p\leq 1\}\). Let \(1<p^ i<\infty\), \(k^ i\in R\) for \(i=1,2,...,m\). The order of the orthoprojective diameter \(d^{\perp}_ N(\cap^{m}_{i=1}\tilde W^{k^ i}_{p^ i},L_ q)\) is established. The results are generalized also to the multidimensional case. Reviewer: J.Musielak Cited in 2 ReviewsCited in 6 Documents MSC: 42A75 Classical almost periodic functions, mean periodic functions 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems Keywords:formal differentiation of the Fourier series; orthoprojective diameter PDF BibTeX XML Cite \textit{Eh. M. Galeev}, Mat. Zametki 43, No. 2, 197--211 (1988; Zbl 0659.42008)