Congruence properties of coefficients of certain algebraic power series. (English) Zbl 0661.10019

The author studies the coefficients u(n) of the Taylor expansion of \((1+\sum^{e}_{i=1}a_ iX^ i)^{-1/e}\) where \(e\in {\mathbb{N}}\), \(e>1\) and \(a_ i\in {\mathbb{Z}}\) for all i. Letting p be a prime with \(p\equiv 1 (mod e)\), the author proves two remarkable congruences for u(n) modulo prime powers of p. The first of them is \(u(mp^ r)\equiv u(mp^{r-1}) (mod p^ r)\) for all \(m,r\in {\mathbb{N}}\). The second result gives a lower bound for the number of primes dividing u(n) as soon as p divides \(a_ i\) for some i. Let \(n=n_ 0+n_ 1p+...+n_ tp^ t\) be the expansion of n in base p. Let \(J=\{1\leq j\leq p-1:\) \(p| a_ i\}\) and \(S=\{k\in {\mathbb{N}}:\) \(n_ k\in J\}\). Then \(ord_ p u(n)\geq (| S| +1).\) The proofs are tedious but elementary.
Reviewer: F.Beukers


11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11A07 Congruences; primitive roots; residue systems
Full Text: Numdam EuDML


[1] G. Christol , T. Kamae , M. Mendès-France and G. Rauzy : Suites algébriques, automates et substitutions . Bull. Soc. Math. France 108 (1980) 401-419. · Zbl 0472.10035
[2] J. Denef and L. Lipshitz : Algebraic power series and diagonals . J. Number Theory 26 (1987) 46-67. · Zbl 0609.12020
[3] M. Mendès-France and A.J. Van Der Poorten : Automata and the arithmetic of formal power series . Publ. Math. Orsay, 86-1, Univ. Paris XI, Orsay (1986). · Zbl 0599.12020
[4] S. Chowla , J. Cowles and M. Cowles : Congruence properties of Apéry numbers , J. Number Theory 12 (1980) 188-190. · Zbl 0428.10008
[5] I. Gessel : Some congruences for Apéry numbers . J. Number Theory 14 (1982) 362-368. · Zbl 0482.10003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.