×

zbMATH — the first resource for mathematics

Rigidity in topological dynamics. (English) Zbl 0661.58027
In analogy with the ergodic theoretical notion, we introduce notions of rigidity for a minimal flow (X,T) according to the various ways a sequence \(T^{n_ i}\) can tend to the identity transformation. The main results obtained are: (i) On a rigid flow there exists a T-invariant, symmetric, closed relation \(\bar N\) such that (X,T) is uniformly rigid iff \(\bar N=\Delta\), the diagonal relation. (ii) For syndetically distal (hence distal) flows rigidity is equivalent to uniform rigidity. (iii) We construct a family of rigid flows which includes Körner’s example, in which \(\bar N\) exhibits kinds of behaviour, e.g. \(\bar N\) need not be an equivalence relation. (iv) The structure of flows in the above mentioned family is investigated. It is shown that these flows are almost automorphic.
Reviewer: S.Glasner

MSC:
37C10 Dynamics induced by flows and semiflows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.2307/2373480 · Zbl 0177.51204 · doi:10.2307/2373480
[2] DOI: 10.2307/2373137 · Zbl 0199.27202 · doi:10.2307/2373137
[3] Körner, Ergod. Th. & Dynam. Sys. 7 pp 559– (1987)
[4] Furstenberg, The finite multipliers of infinite transformation 688 pp 127– (1978) · Zbl 0385.28009
[5] DOI: 10.1007/BF02760611 · Zbl 0434.54032 · doi:10.1007/BF02760611
[6] DOI: 10.2307/2036347 · Zbl 0188.55503 · doi:10.2307/2036347
[7] DOI: 10.2307/1993827 · Zbl 0115.40301 · doi:10.2307/1993827
[8] Ellis, Pac. J. Math. 8 pp 401– (1958) · Zbl 0092.39702 · doi:10.2140/pjm.1958.8.401
[9] Bronstein, Extensions of Minimal Transformation Groups (1979) · doi:10.1007/978-94-009-9559-8
[10] DOI: 10.2307/1995935 · Zbl 0233.54023 · doi:10.2307/1995935
[11] DOI: 10.2307/1995329 · Zbl 0176.20602 · doi:10.2307/1995329
[12] Keynes, Proc. Amer. Math. Soc. none pp none– (none)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.