zbMATH — the first resource for mathematics

String structures and the index of the Dirac-Ramond operator on orbifolds. (English) Zbl 0661.58038
A Dirac operator is defined on a manifold M possessing a spin structure, which happens if the second Stiefel-Whitney class \(w_ 2(M)\) vanishes; the index of this operator is then given by the Atiyah-Singer theorem.
This paper considers the corresponding issues in string theory. The Dirac-Ramond operator is defined as an operator on the loop space of M, when M possesses a “string structure”. The authors discuss the link between existence of such structures and a class \(\lambda \in H^ 4(M,{\mathbb{Z}})\), defined as one half the first Pontryagin class of the tangent bundle of M. For non simply connected M, they suggest that the vanishing of \(\lambda\) should be replaced by a stronger condition.
Then they investigate to what extent the character valued index formula for the Dirac-Ramond operator detects the \(\lambda\)-class. The index formula is also extended to orbifolds, quotients of arbitrary manifolds by discrete symmetry groups.
Reviewer: F.Rouvière

58Z05 Applications of global analysis to the sciences
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
58J20 Index theory and related fixed-point theorems on manifolds
81T60 Supersymmetric field theories in quantum mechanics
53C80 Applications of global differential geometry to the sciences
Full Text: DOI
[1] Witten, E.: Global anomalies in string theory. In: Anomalies, geometry and topology. Bardeen, W., White, A. (eds.). pp. 61-99 Singapore: World Scientific 1985 · Zbl 0643.53071
[2] Schellekens, A. N., Warner, N. P.: Anomalies and modular invariance in string theory. Phys. Lett.177B, 317-323 (1986); Anomaly cancellation and self-dual lattices. Phys. Lett.181B, 339-343 (1986)
[3] Schellekens, A. N., Warner, N. P.: Anomalies, characters and strings. Nucl. Phys.B287, 317-361 (1987)
[4] Pilch, K., Schellekens, A. N., Warner, N. P.: Path integral calculation of string anomalies. Nucl. Phys.B287, 362-380 (1987)
[5] Witten, E.: Elliptic genera and quantum field theory. Commun. Math. Phys.109, 525-536 (1987) · Zbl 0625.57008
[6] Landweber, P., Stong, R. E.: Circle actions on spin manifold and characteristic numbers. Rutgers preprint (1985) · Zbl 0647.57013
[7] Ochanine, S.: Sur les genre multiplicatifs définis par des intégrals elliptique. Topology26, 143-151 (1987) · Zbl 0626.57014
[8] Chudnovsky, D. V., Chudnovsky, G. V.: Elliptic modular forms and elliptic genera. Columbia University preprint (1985) · Zbl 0577.14034
[9] Zagier, D.: Note on the Landweber-Stong elliptic genus, preprint · Zbl 0653.57016
[10] Witten, E.: Fermion quantum numbers and Kaluza-Klein theory. In the Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Foundations of Physics. Khuri N. et al. (eds.). Cambridge, MA; MIT Press 1985
[11] Witten, E.: The index of the Dirac operator in loop space. Princeton preprint PUPT-1050 (1987) · Zbl 0679.58045
[12] Taubes, C.:S 1 actions and elliptic genera. Harvard preprint (1987) · Zbl 0683.58043
[13] Atiyah, M. F., Singer, I. M.: The index of elliptic operators IV, V. Ann. Math.93, 119-149 (1971) · Zbl 0212.28603
[14] Killingback, T.: World-sheet anomalies and loop geometry. Nucl. Phys.B288, 578-588 (1987)
[15] Pressley, A., Segal, G. B.: Loop Groups. Oxford: Oxford University Press 1986 · Zbl 0618.22011
[16] Moore, G., Nelson, P.: Anomalies in nonlinear sigma models. Phys. Rev. Lett.53, 1519-1522 (1984)
[17] Witten, E.: Global gravitational anomalies. Commun. Math. Phys.100, 197-229 (1985) · Zbl 0581.58038
[18] Freed, D. S.: Determinants, torsion, and strings. Commun. Math. Phys.107, 483-513 (1986) · Zbl 0606.58013
[19] Bismut, J.-M., Freed, D. S.: The analysis of elliptic families: Metrics and connections on determinant bundles. Commun. Math. Phys.106, 159-176 (1986); The analysis of elliptic families: Dirac operators, eta invariants, and holonomy theorem of Witten. Commun. Math. Phys.107, 103-116 (1986) · Zbl 0657.58037
[20] Green, M. B., Schwarz, J. H.: Anomaly cancellations in supersymmetricd=10 gauge theory and superstring theory. Phys. Lett.149B, 117 (1984)
[21] See, e.g., Alvarez-Gaumé, L., Ginsparg, P.: The structure of gauge and gravitational anomalies. Ann. Phys.161, 423-490 (1985) · Zbl 0579.58038
[22] Hull, C., Witten, E.: Supersymmetric sigma models and the heterotic string. Phys. Lett.160B, 398-402 (1985)
[23] Atiyah, M. F., Bott, R.: A Lefschets fixed point formula for elliptic complexes: II. Applications. Ann. Math.88, 451-491 (1968); · Zbl 0167.21703
[24] (-), Hirzebruch, F.: Spin manifolds and group actions. In: Essays in topology and related subjects. Berlin, Heidelberg, New York: Springer 1970, pp. 18-28
[25] Alvarez, O., Killingback, T., Mangano, M., Windey, P.: String theory and loop space index theorems. Commun. Math. Phys.111, 1-10 (1987) · Zbl 0627.58033
[26] Wen, X. G., Witten, E.: Electric and magnetic charges in superstring models. Nucl. Phys.261, 651-677 (1985)
[27] Dixon, L., Harvey, J., Vafa, C., Witten, E.: Strings on orbifolds. Nucl. Phys.B261, 678-686 (1985); Strings on orbifolds (II). Nucl. Phys.B274, 285-314 (1986)
[28] Vafa, C.: Modular invariance and discrete torsion on orbifolds. Nucl. Phys.B273, 592-606 (1986) · Zbl 0992.81515
[29] Freed, D. S. Vafa, C.: Global anomalies on orbifolds. Commun. Math. Phys.110, 349-390 (1987) · Zbl 0634.57020
[30] Atiyah, M. F., Bott, R.: The moment map and equivariant cohomology. Topology23, 1-28 (1984) · Zbl 0521.58025
[31] Li, K.: Character-valued index theorems in supersymmetric string theories. MIT preprint CTP-1460 (1987)
[32] Alvarez-Gaumé, L., Moore, G., Vafa, C.: Theta functions, modular invariance, and strings. Commun. Math. Phys.106, 1-40 (1986) · Zbl 0605.58049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.