zbMATH — the first resource for mathematics

Order barriers for the B-convergence of ROW methods. (English) Zbl 0662.65070
This paper investigates the error of Rosenbrock methods when they are applied to the Prothero-Robinson problem \(y'=\lambda (y-g(x))+g'(x).\) The method is called \(B_{PR}\)-convergent of order q, if the global error is bounded by \(C\cdot h^ q\) uniformly for h, \(\lambda\) with \(Re h\lambda <\Lambda_ 0<0\) and \(h\leq \overline{h}\). The main result is that for m- stage Rosenbrock methods of classical order \(p=m+1\), \(p=m\), and \(p=m-1\), the order of \(B_{PR}\)-convergence cannot exceed 2, 3, and 5, respectively. Methods with maximal order of \(B_{PR}\)-convergence are constructed.
Reviewer: E.Hairer

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDF BibTeX Cite
Full Text: DOI
[1] Burrage, K.: A special family of Runge-Kutta methods for solving stiff differential equations. BIT18, 22–41 (1978). · Zbl 0384.65034
[2] Dekker, K., Kraaijevanger, J. F. B. M., Spijker, M. N.: The order ofB-convergence of the Gaussian Runge-Kutta methods. Rep. no. 1985-06, University of Leiden (1985).
[3] Frank, R., Schneid, J., Ueberhuber, C. W.: The concept ofB-convergence. SIAM J. Numer. Anal.18, 753–780 (1981). · Zbl 0467.65032
[4] Frank, R., Schneid, J., Ueberhuber, C. W.:B-convergence of Runge-Kutta methods. Ber. Nr. 48/81, Inst. f. Numer. Math., TU Wien (1981). · Zbl 0467.65032
[5] Frank, R., Schneid, J., Ueberhuber, C. W.: Order results for implicit Runge-Kutta methods applied to stiff systems. Ber. Nr. 53/82, Inst. f. Numer. Math., TU Wien (1982). · Zbl 0577.65056
[6] Hundsdorfer, W. H.: Stability andB-convergence of linearly implicit Runge-Kutta methods. Rep. NM-R 8516, CWI Amsterdam (1985).
[7] Kaps, P., Wanner, G.: A study of Rosenbrock-type methods of high order. Numer. Math.38, 279–298 (1981). · Zbl 0469.65047
[8] Norsett, S. P.: Restricted PadĂ© approximations to the exponential function. SIAM J. Numer. Anal.15/5, 1008–1029 (1978). · Zbl 0405.41009
[9] Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comp.28, 145–162 (1974). · Zbl 0309.65034
[10] Scholz, S.: On the behaviour ofm-stage ROW methods with global error estimation in the smooth phase of stiff problems. In: Discretization in differential equations and enclosures. Math. Research, vol. 36 (Adams, E. et al., eds.), pp. 167–182. Berlin: Akademie-Verlag 1987.
[11] Kaps, P.: Rosenbrock-type methods. In: Numerical Methods for Solving Stiff Initial Value Problems. Proceeding, Oberwolfach 1981. Ber. Nr. 9, Inst. f. Geom. u. Prakt. Math. RWTH Aachen.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.